87 research outputs found

    A Foraging Mandala for Aquatic Microorganisms

    Get PDF
    Aquatic environments harbor a great diversity of microorganisms, which interact with the same patchy, particulate, or diffuse resources by means of a broad array of physiological and behavioral adaptations, resulting in substantially different life histories and ecological success. To date, efforts to uncover and understand this diversity have not been matched by equivalent efforts to identify unifying frameworks that can provide a degree of generality and thus serve as a stepping stone to scale up microscale dynamics to predict their ecosystem-level consequences. In particular, evaluating the ecological consequences of different resource landscapes and of different microbial adaptations has remained a major challenge in aquatic microbial ecology. Here, inspired by Ramon Margalef’s mandala for phytoplankton, we propose a foraging mandala for microorganisms in aquatic environments, which accounts for both the local environment and individual adaptations. This biophysical framework distills resource acquisition into two fundamental parameters: the search time for a new resource and the growth return obtained from encounter with a resource. We illustrate the foraging mandala by considering a broad range of microbial adaptations and environmental characteristics. The broad applicability of the foraging mandala suggests that it could be a useful framework to compare disparate microbial strategies in aquatic environments and to reduce the vast complexity of microbe-environment interactions into a minimal number of fundamental parameters

    KIR gene content diversity in four Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations

    Analysis of Polymorphisms and Haplotype Structure of the Human Thymidylate Synthase Genetic Region: A Tool for Pharmacogenetic Studies

    Get PDF
    5-fluorouracil (5FU), a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms). Prior studies implicated a VNTR (variable numbers of tandem repeats) polymorphism in the 5′-untranslated region (5′-UTR) of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T) repeats and novel single nucleotide polymorphisms (SNPs) flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt), polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing

    Blockade of Gap Junction Hemichannel Suppresses Disease Progression in Mouse Models of Amyotrophic Lateral Sclerosis and Alzheimer's Disease

    Get PDF
    Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases.In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimer's disease mouse model.Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various neurodegenerative diseases

    Evolutionary Dynamics of Human Toll-Like Receptors and Their Different Contributions to Host Defense

    Get PDF
    Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease

    Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution

    Get PDF
    A widespread and complex distribution of vitamin requirements exists over the entire tree of life, with many species having evolved vitamin dependence, both within and between different lineages. Vitamin availability has been proposed to drive selection for vitamin dependence, in a process that links an organism's metabolism to the environment, but this has never been demonstrated directly. Moreover, understanding the physiological processes and evolutionary dynamics that influence metabolic demand for these important micronutrients has significant implications in terms of nutrient acquisition and, in microbial organisms, can affect community composition and metabolic exchange between coexisting species. Here we investigate the origins of vitamin dependence, using an experimental evolution approach with the vitamin B 12 -independent model green alga Chlamydomonas reinhardtii. In fewer than 500 generations of growth in the presence of vitamin B 12, we observe the evolution of a B 12 -dependent clone that rapidly displaces its ancestor. Genetic characterization of this line reveals a type-II Gulliver-related transposable element integrated into the B 12 -independent methionine synthase gene (METE), knocking out gene function and fundamentally altering the physiology of the alga
    • …
    corecore