4,495 research outputs found

    Special Lagrangians, stable bundles and mean curvature flow

    Full text link
    We make a conjecture about mean curvature flow of Lagrangian submanifolds of Calabi-Yau manifolds, expanding on \cite{Th}. We give new results about the stability condition, and propose a Jordan-H\"older-type decomposition of (special) Lagrangians. The main results are the uniqueness of special Lagrangians in hamiltonian deformation classes of Lagrangians, under mild conditions, and a proof of the conjecture in some cases with symmetry: mean curvature flow converging to Shapere-Vafa's examples of SLags.Comment: 36 pages, 4 figures. Minor referee's correction

    Higher cyclic operads

    No full text
    We introduce a convenient definition for weak cyclic operads, which is based on unrooted trees and Segal conditions. More specifically, we introduce a category Ξ\Xi of trees, which carries a tight relationship to the Moerdijk-Weiss category of rooted trees Ω\Omega. We prove a nerve theorem exhibiting colored cyclic operads as presheaves on Ξ\Xi which satisfy a Segal condition. Finally, we produce a Quillen model category whose fibrant objects satisfy a weak Segal condition, and we consider these objects as an up-to-homotopy generalization of the concept of cyclic operad

    Rigorous Derivation of the Gross-Pitaevskii Equation

    Full text link
    The time dependent Gross-Pitaevskii equation describes the dynamics of initially trapped Bose-Einstein condensates. We present a rigorous proof of this fact starting from a many-body bosonic Schroedinger equation with a short scale repulsive interaction in the dilute limit. Our proof shows the persistence of an explicit short scale correlation structure in the condensate.Comment: 4 pages, 1 figur

    Validating foundry technologies for extended mission profiles

    Get PDF
    This paper presents a process qualification and characterization strategy that can extend the foundry process reliability potential to meet specific automotive mission profile requirements. In this case study, data and analyses are provided that lead to sufficient confidence for pushing the allowed mission profile envelope of a process towards more aggressive (automotive) applications.\ud \u

    Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras

    Full text link
    We present a procedure to construct (n+1)-Hom-Nambu-Lie algebras from n-Hom-Nambu-Lie algebras equipped with a generalized trace function. It turns out that the implications of the compatibility conditions, that are necessary for this construction, can be understood in terms of the kernel of the trace function and the range of the twisting maps. Furthermore, we investigate the possibility of defining (n+k)-Lie algebras from n-Lie algebras and a k-form satisfying certain conditions

    Hom-quantum groups I: quasi-triangular Hom-bialgebras

    Full text link
    We introduce a Hom-type generalization of quantum groups, called quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative analogues of Drinfel'd's quasi-triangular bialgebras, in which the non-(co)associativity is controlled by a twisting map. A family of quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular bialgebra, such as Drinfel'd's quantum enveloping algebras. Each quasi-triangular Hom-bialgebra comes with a solution of the quantum Hom-Yang-Baxter equation, which is a non-associative version of the quantum Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be obtained from modules of suitable quasi-triangular Hom-bialgebras.Comment: 21 page

    Geometric Aspects of the Moduli Space of Riemann Surfaces

    Full text link
    This is a survey of our recent results on the geometry of moduli spaces and Teichmuller spaces of Riemann surfaces appeared in math.DG/0403068 and math.DG/0409220. We introduce new metrics on the moduli and the Teichmuller spaces of Riemann surfaces with very good properties, study their curvatures and boundary behaviors in great detail. Based on the careful analysis of these new metrics, we have a good understanding of the Kahler-Einstein metric from which we prove that the logarithmic cotangent bundle of the moduli space is stable. Another corolary is a proof of the equivalences of all of the known classical complete metrics to the new metrics, in particular Yau's conjectures in the early 80s on the equivalences of the Kahler-Einstein metric to the Teichmuller and the Bergman metric.Comment: Survey article of our recent results on the subject. Typoes corrrecte

    Zooming in on local level statistics by supersymmetric extension of free probability

    Full text link
    We consider unitary ensembles of Hermitian NxN matrices H with a confining potential NV where V is analytic and uniformly convex. From work by Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit of the characteristic function for a finite-rank Fourier variable K is determined by the Voiculescu R-transform, a key object in free probability theory. Going beyond these results, we argue that the same holds true when the finite-rank operator K has the form that is required by the Wegner-Efetov supersymmetry method of integration over commuting and anti-commuting variables. This insight leads to a potent new technique for the study of local statistics, e.g., level correlations. We illustrate the new technique by demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section
    • …
    corecore