10 research outputs found

    Relating LANDSAT ETM+ and forest inventory data for mapping successional stages in a tropical wet forestRelacionando LANDSAT ETM+ e dados de inventário florestal para mapeamento estádios sucessionais em uma floresta tropical úmida

    Get PDF
    AbstractIn this study, we test whether an existing classification technique based on the integration of LANDSAT ETM+ and forest inventory data enables detailed characterization of successional stages in a tropical wet forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation hight entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (0.129). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and late successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels. ResumoNesse estudo, testamos se uma técnica de classificação existente, baseada na integração de imagens LANDSAT ETM+ e os dados de inventário florestal, permite a caracterização detalhada dos estádios sucessionais em uma área de floresta tropical úmida. Os objetivos específicos foram: (1) mapear classes de idade florestal na Estação Biológica La Selva, na Costa Rica, e (2) quantificar as incertezas da abordagem proposta em relação aos dados de campo e mapas de vegetação existente. Apesar de terem sido detectadas relações significativas entre dados ETM+ e medidas de entropia da altura da vegetação (um substituto para a idade florestal) o sistema de classificação testados nesse estudo não se demonstrou adequado para caracterizar a variação espacial em idade em La Selva, como evidenciado pela matriz de erro e o baixo coeficiente Kappa (0,129). Fatores que afetam o desempenho da classificação área de estudo em particular, incluem a alta similaridade estrutural entre os estádios sucessionais intermediário e avançado, e a baixa sensibilidade do NDVI a variações na estrutura vertical da biomassa em áreas com níveis elevados de biomassa

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Collecting Influencers: A Comparative Study of Online Network Crawlers

    Full text link
    Online network crawling tasks require a lot of efforts for the researchers to collect the data. One of them is identification of important nodes, which has many applications starting from viral marketing to the prevention of disease spread. Various crawling algorithms has been suggested but their efficiency is not studied well. In this paper we compared six known crawlers on the task of collecting the fraction of the most influential nodes of graph. We analyzed crawlers behavior for four measures of node influence: node degree, k-coreness, betweenness centrality, and eccentricity. The experiments confirmed that greedy methods perform the best in many settings, but the cases exist when they are very inefficient

    Relating LANDSAT ETM+ and forest inventory data for mapping successional stages in a wet tropical forest

    No full text
    In this study, we test whether an existing classification technique based on the integration of LANDSAT ETM+ and forest inventory data enables detailed characterization of successional stages in a tropical wet forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation hight entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (0.129). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and late successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels. Resumo Nesse estudo, testamos se uma técnica de classificação existente, baseada na integração de imagens LANDSAT ETM+ e os dados de inventário florestal, permite a caracterização detalhada dos estádios sucessionais em uma área de floresta tropical úmida. Os objetivos específicos foram: (1) mapear classes de idade florestal na Estação Biológica La Selva, na Costa Rica, e (2) quantificar as incertezas da abordagem proposta em relação aos dados de campo e mapas de vegetação existente. Apesar de terem sido detectadas relações significativas entre dados ETM+ e medidas de entropia da altura da vegetação (um substituto para a idade florestal) o sistema de classificação testados nesse estudo não se demonstrou adequado para caracterizar a variação espacial em idade em La Selva, como evidenciado pela matriz de erro e o baixo coeficiente Kappa (0,129). Fatores que afetam o desempenho da classificação área de estudo em particular, incluem a alta similaridade estrutural entre os estádios sucessionais intermediário e avançado, e a baixa sensibilidade do NDVI a variações na estrutura vertical da biomassa em áreas com níveis elevados de biomassa.Pages: 167-17

    Mapping Successional Stages in a Wet Tropical Forest Using Landsat ETM+ and Forest Inventory Data

    No full text
    In this study, we test whether an existing classification technique based on the integration of Landsat ETM+ and forest inventory data enables detailed characterization of successional stages in a wet tropical forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation height entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (12.9%). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and advanced successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels

    Global forest management data for 2015 at a 100 m resolution

    No full text
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services
    corecore