16,598 research outputs found

    Observational evidence for the shrinking of bright maser spots

    Full text link
    The nature of maser emission means that the apparent angular size of an individual maser spot is determined by the amplification process as well as by the instrinsic size of the emitting cloud. Highly sensitive MERLIN radio interferometry images spatially and spectrally resolve water maser clouds around evolved stars. We measured the properties of clouds around the red supergiant S Per and the AGB stars IK Tau, RT Vir, U Her and U Ori, to test maser beaming theory. Spherical clouds are expected to produce an inverse relationship between maser intensity and apparent size, which would not be seen from cylindrical or slab-like regions. We analysed the maser properties, in order to estimate the saturation state, and investigated the variation of observed spot size with intensity and across the spectral line profiles. Circumstellar masers emanate from discrete clouds from about one to 20 AU in diameter depending on the star. Most of the maser features have negative excitation temperatures close to zero and modest optical depths, showing that they are mainly unsaturated. Around S Per and (at most epochs) RT Vir and IK Tau, the maser component size shrinks with increasing intensity. In contrast, the masers around U Ori and U Her tend to increase in size, with a larger scatter. The water masers from S Per, RT Vir and IK Tau are mainly beamed into spots with an observed angular size much smaller than the emitting clouds and smallest of all at the line peaks. This suggests that the masers are amplification-bounded, emanating from approximately spherical clouds. Many of the masers around U Her and U Ori have apparent sizes which are more similar to the emitting clouds and have less or no dependence on intensity, suggesting that these masers are matter-bounded. This is consistent with an origin in flattened clouds and these two stars have shown other behaviour indicating the presence of shocks.Comment: 17 pages, 26 figure files, accepted by A&A 2010 Oct 2

    Using Multi-Sense Vector Embeddings for Reverse Dictionaries

    Get PDF
    Popular word embedding methods such as word2vec and GloVe assign a single vector representation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead provide different vectors for each sense of a word. However, they typically cannot serve as a drop-in replacement for conventional single-sense embeddings, because the correct sense vector needs to be selected for each word. In this work, we study the effect of multi-sense embeddings on the task of reverse dictionaries. We propose a technique to easily integrate them into an existing neural network architecture using an attention mechanism. Our experiments demonstrate that large improvements can be obtained when employing multi-sense embeddings both in the input sequence as well as for the target representation. An analysis of the sense distributions and of the learned attention is provided as well

    One-degree-of-freedom motion induced by modeled vortex shedding

    Get PDF
    The motion of an elastically supported cylinder forced by a nonlinear, quasi-static, aerodynamic model with the unusual feature of a motion-dependent forcing frequency was studied. Numerical solutions for the motion and the Lyapunov exponents are presented for three forcing amplitudes and two frequencies (1.0 and 1.1 times the Strouhal frequency). Initially, positive Lyapunov exponents occur and the motion can appear chaotic. After thousands of characteristic times, the motion changes to a motion (verified analytically) that is periodic and damped. This periodic, damped motion was not observed experimentally, thus raising questions concerning the modeling

    Variable pitch fan system for NASA/Navy research and technology aircraft

    Get PDF
    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans

    On some aspects of the noise propagation from supersonic aircraft

    Get PDF
    The noise problem associated with an aircraft flying at supersonic speeds is shown to depend primarily on the shock wave pattern formed by the aircraft. The noise intensity received by a ground observer from a supersonic aircraft flying at high as well as low altitudes, is shown to be high although it is of a transient nature. Continues

    Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

    Get PDF
    Massive Open Online Courses (MOOCs) have gained in popularity over the last few years. The space of online learning resources has been increasing exponentially and has created a problem of information overload. To overcome this problem, recommender systems that can recommend learning resources to users according to their interests have been proposed. MOOCs contain a huge amount of data with the quantity of data increasing as new learners register. Traditional recommendation techniques suffer from scalability, sparsity and cold start problems resulting in poor quality recommendations. Furthermore, they cannot accommodate the incremental update of the model with the arrival of new data making them unsuitable for MOOCs dynamic environment. From this line of research, we propose a novel online recommender system, namely NoR-MOOCs, that is accurate, scales well with the data and moreover overcomes previously recorded problems with recommender systems. Through extensive experiments conducted over the COCO data-set, we have shown empirically that NoR-MOOCs significantly outperforms traditional KMeans and Collaborative Filtering algorithms in terms of predictive and classification accuracy metrics

    Performance of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors as Direct Detectors for Sub-millimeter Astronomy

    Full text link
    In the next decades millimeter and sub-mm astronomy requires large format imaging arrays and broad-band spectrometers to complement the high spatial and spectral resolution of the Atacama Large Millimeter/sub-millimeter Array. The desired sensors for these instruments should have a background limited sensitivity and a high optical efficiency and enable arrays thousands of pixels in size. Hybrid microwave kinetic inductance detectors consisting of NbTiN and Al have shown to satisfy these requirements. We present the second generation hybrid NbTiN-Al MKIDs, which are photon noise limited in both phase and amplitude readout for loading levels P850GHz10P_{850GHz} \geq 10 fW. Thanks to the increased responsivity, the photon noise level achieved in phase allows us to simultaneously read out approximately 8000 pixels using state-of-the-art electronics. In addition, the choice of superconducting materials and the use of a Si lens in combination with a planar antenna gives these resonators the flexibility to operate within the frequency range 0.09<ν<1.10.09 < \nu < 1.1 THz. Given these specifications, hybrid NbTiN-Al MKIDs will enable astronomically usable kilopixel arrays for sub-mm imaging and moderate resolution spectroscopy.Comment: 7 pages, 3 figures. Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    Sub-au imaging of water vapour clouds around four Asymptotic Giant Branch stars

    Get PDF
    We present MERLIN maps of the 22-GHz H2O masers around four low-mass late-type stars (IK Tau U Ori, RT Vir and U Her), made with an angular resolution of ~ 15 milliarcsec and a velocity resolution of 0.1 km s-1. The H2O masers are found in thick expanding shells with inner radii ~ 6 to 16 au and outer radii four times larger. The expansion velocity increases radially through the H2O maser regions, with logarithmic velocity gradients of 0.5--0.9. IK Tau and RT Vir have well-filled H2O maser shells with a spatial offset between the near and far sides of the shell, which suggests that the masers are distributed in oblate spheroids inclined to the line of sight. U Ori and U Her have elongated poorly-filled shells with indications that the masers at the inner edge have been compressed by shocks; these stars also show OH maser flares. MERLIN resolves individual maser clouds, which have diameters of 2 -- 4 au and filling factors of only ~ 0.01 with respect to the whole H2O maser shells. The CSE velocity structure gives additional evidence the maser clouds are density bounded. Masing clouds can be identified over a similar timescale to their sound crossing time (~2 yr) but not longer. The sizes and observed lifetimes of these clouds are an order of magnitude smaller than those around red supergiants, similar to the ratio of low-mass:high-mass stellar masses and sizes. This suggests that cloud size is determined by stellar properties, not local physical phenomena in the wind.Comment: 21 pages, including 14 figures and 8 tables. Accepted for publication in MNRA

    Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Get PDF
    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
    corecore