1,976 research outputs found

    Bald eagle nesting ecology and habitat use: Lake McDonald Glacier National Park Montana

    Get PDF

    Wolverine Reproductive Den Habitat in Glacier National Park, Montana

    Get PDF
    Wolverine reproductive dens occur in habitat not easily accessible to humans during the denning period (Feb – May) and can be challenging to find.  As such, few den sites have been precisely described. From 2003 – 2007 we located and documented 14 natal and maternal dens of 3 reproductive female wolverine in Glacier National Park.  Two females were known to have produced young in multiple years, using different den sites each year.  Reproductive dens occurred at an average elevation of 1890m (range: 1805-1999m), on 9° slopes (range: 5-22o), within a variable range of aspects (   =263°), and with an average snow depth of 2.6m (range: 2.4-3.4m). Den structures included downed trees, large boulders, and rock caves associated with alpine cirques, ridges, and cliff bands at, or below, existing tree line.  Distance to occupied human development averaged 6.4km, and distance between denning areas of the same female in different years averaged 5.8 km.  Various climate change models predict less persistent snowpack in many areas of the conterminous United States, with a resultant potential for increased isolation of island populations of wolverines

    Wolverine Food Habitats and Foraging Strategies in Glacier National Park, Montana

    Get PDF
    From 2003-2007 we captured and instrumented 28 wolverines (Gulo gulo) in Glacier National Park to investigate reproduction and recruitment. We collected 189 scat samples at reproductive den, forage and rendezvous sites, and documented 90 prey species through observation and prey remains found at similar sites. Seasonal scat analysis provided evidence of differences in prey species consumed during winter (n = 170), summer (n = 19), and reproductive den (n = 103) periods. Ungulates were the most frequently observed prey found in all scats (71%; N=135), with Cervid remains being observed most often (37%; n = 70). Hibernating rodents (ground squirrels and marmots) (36%; n = 68) were the next most utilized prey, with the third most documented prey being mice and voles (31%; n = 56). Vegetation (72%; n = 169), soil material (31%; n = 59), and bone (90%; n = 171) were also found in scats. Seasonal importance of prey was documented, with ungulates being the most observed prey in winter scats (75%; n = 128) and den period scats (79%; n = 81), and hibernating rodents being most observed in summer scats (47%; n = 9). A similar condition was found with analysis of all prey remains (n = 90); ungulates were consumed most often (69%; n = 63), with hibernating rodents as the second most documented prey (12%; n = 11). Wolverines exhibited seasonal dietary shifts in that ungulates were consumed most frequently during winter (77%; n = 55) and the den period (78%; n = 17), with hibernating rodents the most frequent prey documented in summer (50%; n = 9). Wolverine foraging strategies, including searching tree wells, fishing, decapitation, and food caching are also discussed

    Testing and Improving a UAV-Based System Designed for Wetland Methane Source Measurements

    Get PDF
    Wetlands are the single highest emitting methane source category, but the magnitude of wetland fluxes remains difficult to fully characterize due to their large spatial extent and heterogeneity. Fluxes can vary with land surface conditions, vegetation type, and seasonal changes in environmental conditions. Unmanned aerial vehicles (UAVs) are an emerging platform to better characterize spatial variability in these natural ecosystems. While presenting some advantages over traditional techniques like towers and flux chambers, in that they are mobile vertically and horizontally, their use is still challenging, requiring continued improvement in sensor technology and field measurement approaches. In this work, we employ a small, fast response laser spectrometer on a Matrice 600 hexacopter. The system was previously deployed successfully for 40 flights conducted in a four-day period in 2018 near Fairbanks, Alaska. These flights revealed several potential areas for improvement, including: vertical positioning accuracy, the need for sensor health indicators, and approaches to deal with low wind speeds. An additional set of flights was conducted this year near Antioch in California. Flights were conducted several meters above ground up to 15-25 m in a curtain pattern. These curtains were flown both upwind and downwind of a tower site, allowing us to calculate a mass balance methane flux estimate that can be compared to eddy covariance fluxes from the tower. Testing will better characterize the extent to which altitude drifts in-flight and how GPS values compare with measurements from the onboard LIDAR, as well as the agreement between two-dimensional wind speed and direction on the ground versus measured onboard the UAV. Hardware improvements to the sensor and GPS are being considered to help reduce these sources of uncertainty. Results of this testing and how system performance relates to needs for quantifying wetland fluxes, will be presented

    Using approximate Bayesian computation to quantify cell-cell adhesion parameters in a cell migratory process

    Get PDF
    In this work we implement approximate Bayesian computational methods to improve the design of a wound-healing assay used to quantify cell-cell interactions. This is important as cell-cell interactions, such as adhesion and repulsion, have been shown to play a role in cell migration. Initially, we demonstrate with a model of an unrealistic experiment that we are able to identify model parameters that describe agent motility and adhesion, given we choose appropriate summary statistics for our model data. Following this, we replace our model of an unrealistic experiment with a model representative of a practically realisable experiment. We demonstrate that, given the current (and commonly used) experimental set-up, our model parameters cannot be accurately identified using approximate Bayesian computation methods. We compare new experimental designs through simulation, and show more accurate identification of model parameters is possible by expanding the size of the domain upon which the experiment is performed, as opposed to increasing the number of experimental replicates. The results presented in this work therefore describe time and cost-saving alterations for a commonly performed experiment for identifying cell motility parameters. Moreover, this work will be of interest to those concerned with performing experiments that allow for the accurate identification of parameters governing cell migratory processes, especially cell migratory processes in which cell-cell adhesion or repulsion are known to play a significant role

    Characterisation of riverine dissolved organic matter using a complementary suite of chromatographic and mass spectrometric methods

    Get PDF
    Dissolved organic matter (DOM) plays a fundamental role in nutrient cycling dynamics in riverine systems. Recent research has confirmed that the concentration of riverine DOM is not the only factor regulating its functional significance; the need to define the chemical composition of DOM is a priority. Past studies of riverine DOM rested on bulk quantification, however technological advancements have meant there has been a shift towards analytical methods which allow the characterisation of DOM either at compound class or more recently molecular level. However, it is important to consider that all analytical methods only consider a defined analytical window. Thus, herein, we explore the use of a hierarchy of methods which can be used in combination for the investigation of a wide range of DOM chemistries. By using these methods to investigate the DOM composition of a range of streams draining catchments of contrasting environmental character, a wide range of compounds were identified across a range of polarities and molecular weight, thereby extending the analytical window. Through the elucidation of the DOM character in stream samples, information can be collected about likely the sources of DOM. The identification of individual key compounds within the DOM pool is a key step in the design of robust and informative bioassay experiments, used to understand in-stream ecosystem responses. This is critical if we are to assess the role of DOM as a bioavailable nutrient resource and/or ecotoxicological factor in freshwater

    The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity

    Get PDF
    SummaryFOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity

    Seasonal Variation in the Hepatoproteome of the Dehydrationand Freeze-Tolerant Wood Frog, Rana sylvatica

    Get PDF
    Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC) in combination with tandem mass spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica), a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease
    • …
    corecore