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ARTICLE OPEN

Using approximate Bayesian computation to quantify cell–cell
adhesion parameters in a cell migratory process
Robert J. H. Ross1, R. E. Baker1, Andrew Parker1, M. J. Ford2, R. L. Mort3 and C. A. Yates4

In this work, we implement approximate Bayesian computational methods to improve the design of a wound-healing assay used to
quantify cell–cell interactions. This is important as cell–cell interactions, such as adhesion and repulsion, have been shown to play a
role in cell migration. Initially, we demonstrate with a model of an unrealistic experiment that we are able to identify model
parameters that describe agent motility and adhesion, given we choose appropriate summary statistics for our model data.
Following this, we replace our model of an unrealistic experiment with a model representative of a practically realisable experiment.
We demonstrate that, given the current (and commonly used) experimental set-up, our model parameters cannot be accurately
identified using approximate Bayesian computation methods. We compare new experimental designs through simulation, and
show more accurate identification of model parameters is possible by expanding the size of the domain upon which the
experiment is performed, as opposed to increasing the number of experimental replicates. The results presented in this work,
therefore, describe time and cost-saving alterations for a commonly performed experiment for identifying cell motility parameters.
Moreover, this work will be of interest to those concerned with performing experiments that allow for the accurate identification of
parameters governing cell migratory processes, especially cell migratory processes in which cell–cell adhesion or repulsion are
known to play a significant role.

npj Systems Biology and Applications  (2017) 3:9 ; doi:10.1038/s41540-017-0010-7

INTRODUCTION
Cell–cell interactions are known to play an important role in
several cell migration processes. For example, multiple different
cell–cell interactions, such as cell–cell signalling and cell–cell
adhesion,1 have been identified as promoting metastasis in breast
cancer. Repulsive interactions mediated via ephrins on the surface
of neural crest stem cells are known to coordinate the early stages
of melanoblast migration away from the neural tube.2 More
fundamentally, it is hypothesised that the emergence of cell–cell
interactions over one billion years ago helped establish the
necessary conditions for multicellular organisms.3

A well-established approach for studying cell migration is to
construct an agent-based model (ABM) to simulate the cell
migratory process of interest.4–8 Typically, this involves using a
computational model to simulate a population of agents on a two-
dimensional surface, or in a three-dimensional volume. The agents
in the ABM represent cells, and each agent is able to move and
interact with other agents in the ABM. In this work, we use an ABM
to simulate a wound-healing assay (Wound-healing assays are also
often referred to as scratch assays.), an experiment commonly
used for studying cell motility.9–15 Other modelling approaches
apart from ABMs have been employed to study wound-healing.
For instance, a huge amount of research has been completed
using continuum methods to model the wound-healing process
(see Flegg et al.16 for a recent review of the field). However, we
employ an ABM in this work because they provide an intuitive
representation of cells, and allow for complex behaviours

representing biological processes, such as cell–cell interactions
and volume exclusion, to be easily assigned to agents in the ABM.
If an ABM is an effective (By an effective representation, we

mean the ABM captures the salient features of the process of
interest, and is, therefore, a viable research tool with which to
study the process of interest.) representation of a cell migration
process it can be used for a number of purposes. One such
purpose for an ABM is to perform in silico experiments to test
scientific hypotheses. For instance, a recent study used an ABM to
demonstrate that a simple mechanism of undirected cell move-
ment and proliferation could account for neural crest stem cell
colonisation of the developing epidermis in the embryonic
mouse.4 Other studies involving ABMs have tested hypotheses
concerning the influence of matrix stiffness and matrix architec-
ture on cell migration,17 and the mechanism by which cranial
neural crest stem cells become ‘leaders’ or ‘followers’ in the
embryonic chick to facilitate their collective migration.6–8

ABMs can also be used to identify parameters in experimental
data (with the caveat that the parameters are model-dependent).
The reasoning behind using an ABM to identify parameters in
experimental data is as follows: if an ABM is an effective
representation of an experiment, then the parameter values the
ABM requires to reproduce the experimental data may be
representative of the parameter values in the biological process
that is the focus of the experiment. For instance, the value of a
parameter that describes cell proliferation rate. Even if the
parameter values in the parameterised ABM are not representative
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of the parameter values in the biological process, the parame-
terised ABM may still be used to make predictions about the
process of interest by performing in silico experiments, as
described above. These predictions can then be experimentally
tested.
Alternatively, if the ABM is an effective representation of an

experiment (i.e., the experimental data can be reproduced), but
the parameters of the ABM are not identifiable, this may suggest
the experiment is not well-designed (that is, if the experiment has
been designed to estimate parameters). By parameters not being
identifiable we mean that different parameter values in the ABM
can reproduce the same experimental data. If this is the case, the
ABM can then be used to suggest improvements to the
experiment’s design, namely by altering the ABM design such
that the ABM parameters become identifiable. These alterations
can then be applied to the experiment to improve parameter
identifiability. For example, a recent study using an ABM has
examined the time-points at which data should be collected from
an experiment to maximise the identifiability of ABM para-
meters.11 Other theoretical work has shown how to maximise the
information content of an experiment by choosing an appropriate
experimental set-up.18

The focus of our study is to determine the experimental
conditions, and experimental data, required for the accurate
identification of cell motility and adhesion parameters in an ABM
of a wound-healing assay. To do so, we employ approximate
Bayesian computation (ABC), a probabilistic approach whereby a
probability distribution for the parameter(s) of interest is
estimated, as opposed to a point estimate.10, 19, 20 Although
ABC is well-established in some fields, for instance in population
genetics,21 its applicability for ABMs representing cell migration is
still an area of active research.9–11, 22–24 Recent studies combining
ABC and ABMs have been able to identify motility and
proliferation rates in cell migratory processes,10 and improve the
experimental design of scratch assays.11 However, as far as we are
aware no study to date has used ABC methods to examine the
experimental conditions, and experimental data, required for the
accurate identification of cell motility and adhesion parameters in
a wound-healing assay.
Other methods to identify parameters from experimental data

using ABMs also exist. For instance, a standard approach is to
generate point estimates of model parameters that best
reproduce statistics of the experimental data in the ABM. For
example, the generation of motility and proliferation rates for
agents in an ABM representing a biological process.4 This
approach, while applicable in some circumstances, often gives
little insight into how much uncertainty exists in the parameters
chosen, a factor that can be of importance when analysing
biological systems. For example, relationships between parameter
uncertainty and system robustness are thought to be connected
in biological function at a systems level.25

The outline of this work is as follows: in the Methods Section we
introduce our ABM and define the cell–cell interactions we
implement. We also outline the method of ABC, and the summary
statistics we use to analyse the ABM output. In the Results Section
we present results and demonstrate that, given an ABM
representing an unrealistic experiment, we are able to identify
ABM parameters for agent motility and adhesion. Following this,
we replace our ABM representing an unrealistic experiment with
an ABM that simulates a practically realisable experiment. In doing
so, we show that agent motility and adhesion parameters cannot
be successfully identified using ABC given the current experi-
mental design. To improve parameter identifiability we compare
different experimental set-ups, and show that identification of
ABM parameters is made more accurate if the size of the domain
upon which the experiment is performed is expanded, as opposed
to the number of experimental replicates increased. Experimen-
tally, expanding the size of the domain is equivalent to increasing

the field of view of the microscope used to collect the
experimental data. For instance, generating five experimental
replicates on a larger domain enables more accurate identification
of ABM parameters than generating 500 experimental replicates
on a domain eight times smaller. Finally, we discuss the results
presented in this work.

RESULTS
We begin by demonstrating that for an ABM representing an
unrealistic experiment we are able to identify model parameters,
given appropriate summary statistics.

Unrealistic experiment
To ascertain the effectiveness of the chosen summary statistics to
identify model parameters, we attempt to identify Θ from data
generated synthetically. Synthetic data is ABM data generated with
fixed parameter values, and so can be thought of as a simulation
equivalent of experimental data. To generate the synthetic data
using the ABM we proceed as follows:

1. We choose parameters Θ to identify. To help clarify this
explanation let us make these parameters Θ = (Pm, α) =
(0.5,0.1) in model A (A value of Pm = 0.5, given that the
simulation time will later be defined to be in minutes, and the
length of a lattice site represents cell length (typically
between 10–100 μm, means that the motility of the agents
is biologically realistic. The parameter α is dimensionless. The
experimental realism of these parameters will be expanded
on when we address the simulation of a practically realisable
experiment.).

2. For model A we perform a simulation of the ABM with Θ =
(0.5,0.1), generate data, D, and calculate summary statistics,
S(D), from the simulation at our time-points of interest. These
times are t = [240,480,720]. We choose these times as they are
the times (in minutes) we will later analyse for the simulations
of the practically realisable experiment, and correspond to 4,
8 and 12 h into an experiment.

3. We repeat step 2 ten times and calculate the ensemble
average for each summary statistic for each individual time-
point.

This procedure generates synthetic data for which we will now
attempt to identify the parameters. In this work, we present
representative results using Pm = 0.5 and α = 0.1 for model A, and
Pm = 0.5 and α = 0.25, and Pm = 0.5 and α = −0.1 for model B.
Throughout this work, we sample Pm and α for our model

from uniform priors. In the case of model A, Pm ∈ [0, 1] and α ∈
[−0.2, 0.25], and for model B, Pm ∈ [0, 1] and α ∈ [−0.2, 1.0]. We
stipulate these lower and upper bounds for α for both models A
and B to make sure inequalities (2) and (4) are satisfied.
We begin by implementing an ABC rejection algorithm that

proceeds as follows:
1. Run 104 ABM simulations, in each case using Θ sampled

uniformly at random from the prior distribution.
2. Compute the distance d as defined in Eq. 13 for simulation

times t = [240,480,720].
3. Accept the 100 parameter values, Θ, that give the smallest

values of d.
In Fig. 1, the posteriors generated using each of the three

summary statistics applied to data from simulations of an
unrealistic experiment are displayed. The most effective summary
statistic for identifying the synthetic data parameters is the PCF.
This is evident in the location of the posterior distribution density
relative to the red dot (the red dot represents the synthetic data
parameter values), and the narrow spread of the posterior
distribution density as indicated by the scale bar in Fig. 1c, f
and i. The agent density profile summary statistic performs less
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well than the PCF for parameter identification, especially for
model A (Fig. 1b). In the case of the average agent displacement
summary statistic many combinations of Pm and α lead to the
same average agent displacement, which results in an extended
region of possible parameter values. To some extent this is to be
expected, as increasing either Pm or α will have opposing effects
on the average agent displacement. This means that using agent
displacement as a summary statistic results in parameter
identifiability issues in this example.
To quantify the difference between the performance of the

different summary statistics we use the Kullback-Leibler diver-
gence (KLD), which is a measure of the information gained in
moving from the prior distribution to the posterior distribution.26

The KLD for a discrete probability distribution is defined as follows:

DKL pjπð Þ ¼
X

l

p ΘljDð Þ log p Θl jDð Þ
π Θlð Þ

� �
; ð1Þ

where the index l accounts for all possible discretised parameter

pairs (i.e., all combinations of Pm and α). A larger DKL(p|π) value
suggests that more information is obtained (the entropy of the
distribution is reduced) when moving from the prior distribution
to the posterior distribution. However, this does not necessarily
mean the posterior distribution is a more accurate representation
of the parameter distribution. Therefore, the KLD should not be
seen as ubiquitously applicable to inference problems similar to
those described in this work. In particular, the KLD should be used
with caution in scenarios in which an informative prior is used. In
such scenarios, other methods to measure the improvement of an
inference procedure have been examined and may be more
suitable.27

To compute the KLD, we discretise our posterior distribution
onto a lattice with 26 equally spaced values of Pm and 26 equally
spaced values of α. Computing DKL(p|π) for all nine plots in Fig. 1
gives: (a) 1.77; (b) 1.70; (c) 2.32; and (d) 2.15; (e) 2.57; (f) 3.35; and
(g) 2.45; (h) 2.72; (i) 3.27. In tandem with the proximity of the peak
of the posterior distribution densities to the red dots in Fig. 1c, f
and i, compared to Fig. 1a, b, d, e, g and h, this is increase in the

Fig. 1 a–c Posterior distributions for model A for an unrealistic experiment with different summary statistics: a average displacement of
agents in the horizontal direction; b agent density profile; c PCF. In all cases the red dot indicates the value of the parameters used to generate
the synthetic data, Pm= 0.5, α= 0.1. As indicated by the colour bar the yellow regions indicate areas of high relative density of the posterior
distribution, while the blue regions indicate areas of low relative density of the posterior distribution. d–f Model B, Pm= 0.5, α= 0.25: d average
displacement of agents in the horizontal direction; e agent density profile; f PCF. g–i Model B, Pm= 0.5, α= −0.1; g average displacement of
agents in the horizontal direction; h agent density profile; i PCF
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KLD suggests that the PCF summary statistic is more effective for
parameter identification than the average agent displacement and
agent density profile summary statistics.

Practically realisable experiment
In the previous section, we demonstrated that for unrealistic
experimental conditions the PCF summary statistic is best able to
identify synthetic data parameters (for data generated from an
ABM of an unrealistic experiment), and so moving forward we will
only use the PCF summary statistic for parameter identification.
Previous work has combined summary statistics to improve
parameter identification, and how best to combine summary
statistics has been the focus of a significant amount of research,
with a wide range of different methods examined.10, 27–30

However, in this case combining our summary statistics results
in a negligible improvement to the posterior distribution (An
example of a posterior distribution generated by combining all
three summary statistics can be found in the supplementary
material (Section S1)).
We now replace our ABM that represents an unrealistic

experiment with an ABM that represents an actual experiment,
and examine if synthetic data parameters can be identified in the
ABM. That is, from this point on, we generate all synthetic data
from an ABM based on a realistic experimental set-up. We provide
brief details of the experiment here, however, a more detailed
description can be found in the supplementary material (Section
S2). In Fig. 2a typical initial frame of the experimental data can be
seen.
In total, we have data from five replicates of the experiment.

Therefore, we now generate our synthetic data from five replicates
of the ABM, using the same procedure as described before. One
key difference between the unrealistic and practically realisable
experiments is the size of the domain and, because of this, the
number of agents in a simulation.
The experimental images were captured by a microscope with a

field of view of 597.24 µm by 597.24 µm. The cell size in the
experimental images is consistent with each cell occupying a

26 µm by 26 µm square lattice site. Given the size of the
microscope field of view this means the ABM domain size is
Lx = 23 by Ly = 23. We use the average initial conditions from the
experiment to generate the initial conditions in the ABM of a
realistic experiment. Exact details of how the initial condition is
generated in the ABM, and how experimental data is mapped to a
lattice, can be found in the supplementary material (Section S3).
We also alter the ABM to have flux (nonperiodic) boundary

conditions at the left-hand and right-hand boundaries of the
domain (i.e., for lattice sites with j = 1 or j = Ly). The left-most
column is kept at or above a constant density throughout the
simulation time course. That is, after any movement event from
the left-most column in the simulation the column density of the
left-most column is calculated, and if found to be below a certain
density agents are added to empty sites in this column chosen
uniformly at random until the required density is achieved. This
mechanism ensures that the agent density profile in the ABM
replicates the evolution of the experimental data throughout the
simulation. Further details regarding the implementation of this
boundary condition are provided in the supplementary material
(Section S3). The top and bottom boundaries of the ABM domain
remain periodic as cells were seen to move in and out of the
microscope field at these boundaries in the experimental images,
at an approximately equal rate.
To reduce computational time we now implement a Markov

Chain Monte Carlo variant of ABC.19 Details of the implementation
of the algorithm are given in the supplementary material (Section
S4). As before we sample from uniform priors Pm ∈ [0, 1] and α ∈
[−0.2, 0.25] for model A, and Pm ∈ [0, 1] and α ∈ [−0.2, 1.0] for
model B, and collect simulation data at t = [240,480,720]. We
collect simulation data at three time-points so that the computa-
tional time is of practical length (our longest ABC Markov Chain
Monte Carlo implementations took approximately 192 h). A value
of Pm = 0.5, given that the simulation time is in minutes, and the
length of a lattice site is 26 µm, means that the motility of the
agents is biologically realistic. To be precise, the agents here are
approximately five times faster than cell motility rates previously
published (Using the relationship that the diffusion coefficient is
equal to PmΔ

2.) (refs 4, 9). However, the cells considered in refs 4, 9
are not thought to exhibit cell–cell adhesion, and so a higher
motility rate for the agents is sensible as agent movement is
reduced by cell–cell adhesion in our ABM.
In Fig. 3 it can be seen that the synthetic data parameters

cannot be accurately identified using ABC, with the PCF summary
statistic, given the current ABM design. This is evident in the
location of the red dots (indicating the parameter values used to
generate the synthetic data) relative to the posterior distributions,
and the wide spread of the posterior distributions (indicated by
the scale bar in Fig. 3). We have included the ABC Markov chain
Monte Carlo traces corresponding to Fig. 3 in the supplementary
material (Section S5).
A possible reason why the synthetic data parameters cannot be

identified is that the synthetic data does not accurately represent
the parameter values used to generate it, making parameter
identification infeasible. To examine this possibility, we calculated
the variance in the PCF synthetic data. In Fig. 4a–c the blue line
indicates the variance in the PCF synthetic data for the current
simulation design generated from five replicates of the ABM on a
domain of dimension Lx = 23 by Ly = 23.
If the variance in the summary statistics of the synthetic data

precludes accurate identification of model parameters using ABC,
a sensible strategy may be to examine methods to reduce the
variance in the summary statistics of the synthetic data. Reducing
the variance of the summary statistics may mean the synthetic
data is a more accurate reflection of the parameters values used to
generate it. This may also explain why parameter identification for
the unrealistic experiment was successful, as the variance in the

Fig. 2 Typical initial frame of the experimental data. The cells are
positioned such that they will migrate primarily horizontally into the
space without cells, this space represents a wound (the direction of
migration is indicated by the white arrow)
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summary statistics of the synthetic data was much smaller than for
the practically realisable experiment (data not shown).
We conjectured that the variance in the summary statistics of

the synthetic data could be reduced in two ways:
1. increasing the number of ABM replicates used to generate

the synthetic data;
2. increasing the size of the ABM domain while keeping the

column density of the initial conditions invariant. An example of
this proposed initial condition is given in Fig. 5b, in which the
domain is twice the size of that in Fig. 5a. Importantly, increasing
the size of the ABM domain increases the number of agents in the
simulation, and can be thought of as equivalent to increasing the
field of view of the microscope.
In Fig. 4, the variance in the PCF synthetic data for model B with

Pm = 0.5 and α = 0.25 for different domain sizes and varying
numbers of replicates can be seen. It is evident that the variance in
the PCF calculated from 500 replicates of our ABM on a Lx = 23 by
Ly = 23 sized domain (blue line in Fig. 4d–f) is greater than the
variance in the PCF calculated from five replicates of our ABM on a
Lx = 23 by Ly = 184 sized domain (purple line in Fig. 4a–c). This can
be understood by considering Eq. 9: the number of occupied
lattice pairs for each horizontal pair distance used to generate the
PCF does not increase linearly with the number of agents.
Specifically, the number of occupied lattice pairs for each
horizontal pair distance that generates the PCF is proportional
to (This is not quite correct as a distance of ‘0’ between agents,
that is they share the same column, is not accounted for in Eq. 9.
To make Eq. 2 exact is not trivial as the expected number of
agents each agent shares a column with depends on both the
column position and simulation time.)

NðN � 1Þ
2

: ð2Þ

Therefore, the identification of parameters in experimental data
using the PCF as a summary statistic may be best facilitated by
increasing the size of the domain upon which the experiment is
performed, rather than increasing the number of replicates of an
experiment with a smaller domain. Further variance plots for
models A and B for the PCF summary statistic can be found in
the supplementary material (Section S6).
It is important to note that it is also the case for the agent

density profile synthetic data, that increasing the size of the
domain is more effective at reducing variance in the synthetic
data than increasing the number of replicates. If generated from
500 replicates of our ABM on a Lx = 23 by Ly = 23 sized domain, the
agent density profile synthetic data will have greater variance
than the agent density profile synthetic data generated from five
replicates of our ABM on a Lx = 23 by Ly = 184 sized domain (data
not shown). In this case, the reduction in variance is an artefact of
the lattice-based model. This is because the density of each

column in the ABM can take on a greater range of values between
0 and 1 as the column length is increased, leading to a reduction
in variance in the agent density profile synthetic data (especially in
the initial conditions of the simulations used to generate the
synthetic data). However, as we do not use the agent density
profile summary statistic to identify parameters in the current
simulation design we do not pursue this matter further.

Improving the experimental design
We now confirm that more accurate identification of synthetic
data parameters can be carried out by expanding the domain
upon which the experiment is performed, as opposed to
increasing the number of experimental replicates.
In Fig. 6a–c, we plot the posterior distribution for synthetic data

generated from 500 replicates of our ABM on a Lx = 23 by Ly =
23 sized domain, while in Fig. 6d–f we plot the posterior
distribution generated from synthetic data generated from five
replicates of our ABM on a Lx = 23 by Ly = 184 sized domain
(A Markov chain Monte Carlo trace corresponding to Fig. 7e can
be found in the supplementary material (Section S5)). As
predicted, it is apparent that increasing the domain size is more
effective for parameter identification than increasing the number
of replicates used to generate the synthetic data. This is evident in
the location (and narrow spread) of the posterior distribution
relative to the red dot, whereby the peak of the posterior
distribution is closer to the red dot in the case of Fig. 6d–f
compared to Fig. 6a–c. Despite this, the identification of the
parameters for repulsive interactions remains somewhat elusive
(Fig. 6f). A possible reason for this is that the repulsive interaction
we present here is a weak one, due to the constraint of Eqs. 4 and
6, and larger values of |α| are easier to identify as they have a more
profound effect on the behaviour of the agent population.
Computing DKL(p|π) for all six plots in Fig. 6 gives: (a) 2.55; (b)

2.69; (c) 1.53; and (d) 3.69; (e) 2.97; (f) 3.54. In tandem with the
proximity of the peak of the posterior distribution densities to the
red dots in Fig. 6d–f compared to Fig. 6a–c, this increase in the
KLD suggests that generating synthetic data on a larger domain is
more effective for improving parameter identification than
increasing the number of replicates used to generate the synthetic
data.

DISCUSSION
In this work, we have presented methods to identify motility and
adhesion parameters in an ABM of a wound-healing assay. Our
findings suggest that for a commonly performed experiment
increasing the size of the experimental domain can be more
effective in improving the accuracy of parameter identification,
when compared to increasing the number of replicates of the

Fig. 3 Posterior distributions for simulations of the realistic experiment described using the PCF as a summary statistic for an ABM of
dimension Lx= 23 and Ly= 23. The synthetic data is generated from five replicates of the ABM. aModel A: Pm= 0.5, α= 0.1, bmodel B: Pm= 0.5,
α= 0.25, c model B: Pm= 0.5, α= −0.1. In all cases the red dot indicates the value of the parameters used to generate synthetic data
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experiment. This is because increasing the size of the domain,
which is equivalent to increasing the number of cells in the
experiment, more effectively reduces the variance in the summary
statistics of the synthetic data from which the parameters are
identified. The reason for this reduction in variance is explained by
Eq. 9, where the number of agent pair counts that generate the
PCF increases nonlinearly with the number of agents on the
domain. In addition, increasing the size of the experimental
domain may make the collection of experimental data less time-
consuming, as potentially fewer replicates of the experiment will
have to be conducted. For instance, five replicates of the
experiment on a larger domain provides more information about
parameters than 500 replicates of the experiment on a smaller
domain (in the examples we have presented in this work).
Therefore, a comprehensive study of all summary statistics
commonly used for analysing cell migration, to understand how
their variance scales with the size of the experimental domain, is
an interesting avenue for further research.
We also studied using the average horizontal displacement of

agents and the agent density profile as summary statistics. These
were found to be less effective than the PCF in parameter
identification. This was especially the case for the averaged agent
displacement, whereby a range of adhesion and motility
parameters could result in the same average agent displacement.
This result suggests that agent displacement may not be a suitable
summary statistic for identifying cell motility and adhesion
parameters, due to parameter identifiability issues.
The most obvious extension to the work presented here is to

experimentally validate the findings. That is, expand the wound-
healing experimental domain and demonstrate: (i) the cell
migratory process can be effectively described by the model we
have presented here; and (ii) the experimental parameters are
identifiable given a larger experimental domain. If validated,
evidence may be provided that demonstrates which adhesion
model, A or B, is more applicable to the cell type under
consideration. Subsequently, we could add further agent

behaviours to the ABM, such as the role of the cell cycle. This
may allow us to better capture the behaviour of the cell
populations we have studied here, and so produce more realistic
models of cell migration.
To conclude, the findings presented in this work will be of

particular interest to those concerned with performing experi-
ments that enable the effective parameterisation of cell migratory
processes. In particular, cell migratory processes in which cell–cell
adhesion or repulsion are known to play an important role. More
generally, we have also suggested time and cost-saving alterations
to a commonly performed experiment for identifying cell motility
parameters.

METHODS
In this section, we first introduce the ABM. We then define our summary
statistics and explain ABC and its implementation.

Agent-based model
An ABM is a computational model for simulating the behaviour of
autonomous agents. The agents in the ABM represent cells, and each
agent is able to move and interact with other agents. The ABM is simulated
on a two-dimensional square lattice with lattice spacing31 and size Lx by Ly,
where Lx is the number of lattice sites in each row, and Ly is the number of
sites in each column. Each agent is initially assigned to a lattice site, from
which it can move into adjacent sites. If an agent attempts to move into a
site that is already occupied by another agent, the movement event is
aborted. Processes such as this whereby one agent is allowed per site are
often referred to as exclusion processes.31 In the ABM time evolves
continuously, and as our ABM can be modelled as a continuous-time
Markov process we use the Gillespie algorithm32 to generate sample paths.
Attempted agent movement events occur with rate Pm per unit time. Pmδt,
therefore, is the probability of an agent attempting to move in the next
infinitesimally small time interval δt. In our ABM, a lattice site is denoted by
v = (i, j), where i indicates the column number and j the row number. Each
lattice site has four adjacent lattice sites (except for those sites situated on
nonperiodic boundaries), and so the number of nearest neighbour lattice

Fig. 4 The variance in the PCF synthetic data for model B with Pm= 0.5, α= 0.25 and different ABM domain sizes. Panels a–c display synthetic
data generated from five replicates of the ABM, panels d–f display synthetic data generated from 500 replicates of the ABM. The domain size
is indicated in the legend
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sites that are occupied by an agent, denoted by n, is 0≤ n≤ 4. We denote
the set of unoccupied nearest neighbour lattice sites by U.
The ABM domain size for simulations representing unrealistic experi-

ments is Lx = 100 by Ly = 100, and the lattice sites indexed by 1≤ j≤ Ly and
1≤ i≤ 10, and1≤ j≤ Ly and 91≤ i≤ Lx are initially occupied by agents. In
Fig. 7, the initial conditions in the ABM for the unrealistic experiment can
be seen. The initial condition in Fig. 7 represents a ‘wound’, in that agents
are positioned either side of a space, the ‘wound’, that they can migrate
into. The agent migration into this space simulates one aspect of the
wound-healing process. We refer to this simulation as unrealistic because
the uniformity of the initial conditions would not be possible in a realistic
experimental setting. The initial condition is also improved from our
experimentally realisable simulation as it is ‘double-sided’, as opposed to
the ‘single-sided’ experimental data that we will later simulate for our ABM
of a realistic experiment. It has been shown that double-sided initial
conditions can provide more information than single-sided initial
conditions for some model parameters.11 For instance, double-sided initial
conditions can improve parameter identifiability if increasing the number
of agents in a simulation improves parameter identifiability.
For the ABM of an unrealistic experiment, all simulations have periodic

boundary conditions at the top and bottom of the domain (i.e. for lattice
sites indexed by j = 1 or j = Ly), and no-flux boundary conditions at the left-
hand and right-hand boundaries of the domain (i.e. for lattice sites indexed
by i = 1 or i = Lx).
It is important to stress that throughout this work we assume that

cellular processes such as migration have constant parameter values
associated with them. Inference procedures do exist in which the
parameter values associated with cell processes are not assumed to be
constant, but are instead treated as a random variable sampled from a
distribution. These methods are often important for sensitivity analysis, or
if the data is sampled from a heterogeneous population.33–35 However, we
do not implement these methods in this work as it would serve to
prematurely complicate our research question. It is also important to
acknowledge that in migrating cell populations there are often many more
factors at play than simply cell motility and adhesion. For instance, the cell
cycle and a cell’s response to environmental cues may be important factors
in a cell’s behaviour. Again, however, we have purposely simplified our
model to first ascertain if we can accurately estimate parameters
associated with cell motility and adhesion.

Cell–cell adhesion models
In the ABM cell–cell interactions are simulated by altering the probability
of an agent attempting to move, depending on the number of nearest
occupied neighbours, n, an agent has. We employ two models to simulate
cell–cell interactions in the ABM, one of which has been published
before.13, 36 We define T(v′|v) as the transition probability that an agent
situated at site v, having been selected to move, attempts to move to site
v′, where v′ indicates one of the nearest neighbour sites of v. Therefore,
T(v′|v) is only non-zero if v and v′ are nearest neighbours. The transition

probability in the first model, which we refer to as model A, is defined as

TA v′ vjð Þ ¼ 1� nα
4

; ð3Þ

where α is the adhesion parameter. The subscript A on the transition
probability in Eq. 3 indicates that this is the transition probability for model
A. If α > 0 Eq. 3 models cell–cell adhesion, and if α < 0 Eq. 3 models cell–cell
repulsion. The transition probabilities stated in Eq. 3 must satisfy

0 �
XU

v′2U
TA v′ vjð Þ � 1: ð4Þ

Inequality (4) ensures the probability of an agent, if selected to move,
attempting to move to any of its unoccupied nearest neighbour sites never
exceeds unity, and so constrains the value α can take. The transition
probability in the second model, which we refer to as model B,13, 36 is
defined as

TB v′ vjð Þ ¼ 1� αð Þn
4

; ð5Þ

and must satisfy

0 �
XU

v′2U
TB v′ vjð Þ � 1: ð6Þ

As in model A if α > 0 Eq. 5 models cell–cell adhesion, and if α < 0 Eq. 5
models cell–cell repulsion.
Models A and B simulate different types of cell–cell adhesion. In model

A, the transition probability is a linear function of n. Meanwhile, in model B
the transition probability is a nonlinear function of α. Not only may these
different types of cell–cell adhesion be relevant for different cell types, but
implementing two models of cell–cell adhesion allows us to test the
robustness of the methods we present in this work for identifying cell–cell
adhesion parameters.

Summary statistics
Summary statistics are lower-dimensional summaries of data that provide a
tractable means to compare different sets of data. Summary statistics are
important because experimental data is often of high dimensionality, and
if we want to use experimental data to efficiently guide computational
algorithms we require ways to accurately summarise it. We now define the
summary statistics we apply to the ABM output and experimental data.
Following this, we describe how we utilise these summary statistics to
implement ABC.
We initially use three summary statistics to evaluate the ABM output, all

of which have been considered previously.9, 36, 37 Our aim is to ascertain
which summary statistic (or combination of summary statistics) is most
effective for the identification of agent motility and adhesion parameters
in the ABM.
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Average horizontal displacement of agents
The average horizontal displacement of all agents, ī, in a given time
interval, [ti, tf], in the ABM is calculated as

i ¼ 1
N

XN

k¼1

ikti � iktf

���
���; ð7Þ

Where ī is the average horizontal displacement of agents, N is the total
number of agents in the simulation, ikti is the column position of agent k at

time ti, and iktf is the column position of agent k at time tf. We only look at
the horizontal displacement of agents as this is the direction in which the
majority of agent displacement occurs, due to the initial conditions of the
ABM (Fig. 7). It has previously been shown that different cell–cell
interactions have different effects on the average displacement of agents
in an ABM.36 As may be expected, repulsive (adhesive) interactions
between agents tend to increase (decrease) the average displacement of
agents, and so the average displacement of agents may be a useful
summary statistic for distinguishing between repulsive and adhesive
cell–cell interactions in the ABM.

Agent density profile
The agent density profile at time t in the ABM is calculated as

Ct ið Þ ¼ 1
Ly

XLy

j¼1

1 vf g: ð8Þ

Here Ct(i) is the agent density profile and 1 is the indicator function for
the occupancy of a lattice site v (i.e., 1 if an agent occupies lattice site v,
and 0 if it is not occupied by an agent). We have shown previously that
different cell–cell interactions have different effects on the agent density
profile.36 For instance, repulsive interactions between agents can create a
concave agent density profile, whereas adhesive interactions between
agents can create a convex agent density profile. Therefore, the agent
density profile may be an effective summary statistic for distinguishing
between repulsive and adhesive cell–cell interactions in the ABM.

Pairwise-correlation function
The final summary statistic, we consider is the pairwise-correlation function
(PCF). The PCF provides a measure of the spatial clustering between agents
in an ABM, and has been used frequently in the analysis of cell migratory
processes.4, 9, 38, 39 The PCF has also been successfully used as a summary
statistic for the parameterisation of ABMs of cell migration.10 We use ikt to
denote the column position of agent k at time t, ilt to denote the column
position of agent l at time t, and define ct(m) to be the number of occupied
pairs of lattice sites for each nonperiodic (By nonperiodic it is meant the

Fig. 6 a–c Posterior distributions for simulations of the realistic experiment using the PCF as a summary statistic for an ABM simulated on a
domain of dimension Lx= 23 by Ly= 23 with synthetic data generated from 500 replicates. a Model A: Pm= 0.5, α= 0.1, b model B: Pm= 0.5,
α= 0.25, c model B: Pm= 0.5, α= −0.1. d–f Posterior distribution plots for simulations of the experiment using the PCF as a summary statistic
for an ABM simulated on a domain of size Lx= 23 by Ly= 184 with synthetic data generated from five replicates. a Model A: Pm= 0.5, α= 0.1,
b model B: Pm= 0.5, α= 0.25, c model B: Pm= 0.5, α= −0.1. Further figure information can be found in Fig. 1
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distance measured between two agents cannot cross the ABM boundary)
horizontal pair distance m= 1,…,Lx−1 at time t. This means ct(m) is given
by

ct mð Þ ¼
XN

k¼1

XN

l¼kþ1

1 ikt � ilt
�� �� ¼ m

� �
; 8m ¼ 1; ¼ ; Lx � 1; ð9Þ

Where 1 is the indicator function equal to unity if ikt �ilt
���� =m, and is equal

to zero otherwise. In Eq. 9 only the pair agent distances in the horizontal
direction are counted. Given the translational invariance of the initial
conditions in the vertical direction of the ABM, the majority of important
spatial information will be in the horizontal direction (This approach is in
agreement with previous studies39, which showed the most relevant
information from the PCF summary statistic is perpendicular to the wound
axis in a wound-healing assay). Binder and Simpson39 demonstrated that is
necessary to normalise Eq. 9 to account for volume exclusion. The
normalisation term is

ĉt mð Þ ¼ L2y Lx �mð Þρρ̂; 8m ¼ 1; ¼ ; Lx � 1; ð10Þ
where = N/(LxLy) , and ρ̂ = (N−1)/(LxLy−1). Eq. 10 describes the expected

number of pairs of occupied lattice sites, for each nonperiodic horizontal
pair distance, m, in a population distributed uniformly at random on the
domain. Combining Eqs. 9 and 10, the PCF is

qtðmÞ ¼ ctðmÞ
ĉtðmÞ ; ð11Þ

Where qt(m), the PCF, is a measure of how far ct(m) departs from describing
the expected number of occupied lattice pairs for each horizontal distance
of an agent population spatially distributed uniformly at random on the
ABM domain.
It is important to briefly discuss why we chose these summary statistics

and not others that have also been used to analyse cell migration.10, 22, 24

Other summary statistics were initially implemented in this study, such as
the concavity of agent trajectories, the total distance travelled by agents
and the leading edge of the agent population. However, these summary
statistics were found not to be informative for the identification of agent
motility and adhesion parameters in our ABM, and so were excluded from
this work. The three summary statistics we implement are encapsulated in
Table 1 for the reader’s convenience, in addition to the properties each
summary statistic summarises in the agent population.

Approximate Bayesian computation
Here, we introduce our ABC algorithm.19 We define M as a stochastic
model that takes parameters Θ and produces data D. This relationship can
be written as D~M(Θ). For the ABM presented in this work Θ = (Pm, α),
where Θ is sampled from a prior distribution, π, and so this relationship can
be written as Θ~π. The relationship between π and Θ is often written as ~π
(Θ), which indicates that a new Θ sampled from the prior distribution may
depend on the previous Θ. This relationship will be relevant later on in this
work, however, initially each Θ sampled from π is independent of the
previous Θ.
The identification of ABM parameters in this work centres around the

following problem: given a stochastic model, M, and data, D, what is the
probability density function that describes Θ being the model parameters
that produced data D? More formally, we seek to obtain a posterior
distribution, p(Θ|D), which is the conditional probability of Θ given D (and
the model, M).
Typically, to compute the posterior distribution a likelihood function, L

(D|Θ), is required. This is because the likelihood function and posterior

distribution are related in the following manner by Bayes’ theorem:

p ΘjDð Þ / L DjΘð Þπ Θð Þ: ð12Þ
That is, the posterior distribution is proportional to the product of the

likelihood function and the prior distribution.
ABC is a well-known method for estimating posterior distributions of

model parameters in scenarios where the likelihood function is intractable
i.e., it is impossible or computationally prohibitive to obtain.19

In many cases for ABC, due to the high dimensionality of the data, D, it is
necessary to utilise a summary statistic, S = S(D). The summary statistics we
employ in this work are of varying dimension. For instance, the agent
density profile at time t has Lx data points, whereas the average agent
displacement at time t has one data point. Therefore, we write S(D) as
S(D)r,t, where S(D)r,t is the rth data point in the summary statistic at the tth

sampling time.
The ABC method proceeds in the following manner: we wish to estimate

the posterior distribution of Θ given D. We now simulate model M with
parameters Θ, sampled from π, and produce data ~D. We calculate the
difference between a summary statistic applied to D and ~D with

d ¼
XT

t¼1

XR

r¼1

SðDÞr;t
��� � S ~D

� �
r;t ;j ð13Þ

Where R is the number of data points in S(D) and T is the number of
sampling times. We repeat the above process many times, that is, sample
Θ from π, produce ~D, calculate d with Eq. 13, and only accept Θ for which d
is below a user defined certain threshold (alternatively, a predefined
number of Θ that minimise d can be accepted). This enables us to generate
a distribution for Θ that is an approximation of the posterior distribution, p
(Θ|D), given M.40 More specific details of the ABC algorithms we implement
are introduced when necessary in the text.
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