4,698 research outputs found
Black box and mechanistic modelling of electronic nose systems
Electronic nose systems have been in existence for around 20 years or more. The ability to mimic the function of the mammalian olfactory system is a very tempting goal. Such devices would offer the possibility of rapid chemical screening of samples. To gain a detailed insight into the operation of such systems it is proposed to carry out a systems modelling analysis. This thesis reports such an analysis using black box and mechanistic models.
The nature and construction of electronic nose systems are discussed. The challenges presented by these systems in order to produce a truly electronic nose are analysed as a prelude to systems modelling. These may be summarised as time and environmental dependent behaviour, information extraction and computer data handling.
Model building in general is investigated. It is recognised that robust parameter estimation is necessary to build good models of electronic nose systems. A number of optimisation algorithms for parameter estimation are proposed and investigated, these being gradient search, genetic algorithms and the support vector method. It is concluded that the support vector method is most robust, although the genetic algorithm approach shows promise for initial parameter value estimation.
A series of investigations are reported that involve the analysis of biomedical samples. These samples are of blood, urine and bacterial cultures. The findings demonstrate that the nature of such samples, such as bacterial content and type, may be accurately identified using an electronic nose system by careful modelling of the system. These findings also highlight the advantages of data set reduction and feature extraction.
A mechanistic model embodying the operating principles of carbon black-polymer sensors is developed. This is validated experimentally and is used to investigate the environmental dependencies of electronic nose systems. These findings demonstrate a clear influence of environmental conditions on the behaviour of carbon black-polymer sensors and these should be considered when designing future electronic nose systems.
The findings in this thesis demonstrate that careful systems modelling and analysis of electronic nose systems allows a greater understanding of such systems
Oxygen-Driven Tumour Growth Model : A Pathology-Relevant Mathematical Approach
We acknowledge Lucas Dias Fernandes and Dr Nicolas Rubido from the University of Aberdeen and Dr Neil Evans from the University of Warwick for the broad discussions on the mathematics.Peer reviewedPublisher PD
Cosmic string formation and the power spectrum of field configurations
We examine the statistical properties of defects formed by the breaking of a
U(1) symmetry when the Higgs field has a power spectrum . We
find a marked dependence of the amount of infinite string on the spectral index
and empirically identify an analytic form for this quantity. We also
confirm that this result is robust to changes in the definition of infinite
string. It is possible that this result could account for the apparent absence
of infinite string in recent lattice-free simulations.Comment: MAJOR REVISION AND NEW RESULTS INCLUDED. 15 pages, uuencoded (LaTeX +
8 postscript figures). Version accepted by Phys. Rev. D. Available at
http://euclid.tp.ph.ic.ac.uk/Papers
Recommended from our members
Best practices to maximize the use and reuse of quantitative and systems pharmacology models: recommendations from the United Kingdom quantitative and systems pharmacology network
The lack of standardization in the way that quantitative and systems pharmacology (QSP) models are developed, tested, and documented hinders their reproducibility, reusability, and expansion or reduction to alternative contexts. This in turn undermines the potential impact of QSP in academic, industrial, and regulatory frameworks. This article presents a minimum set of recommendations from the UK Quantitative and Systems Pharmacology Network (UK QSP Network) to guide QSP practitioners seeking to maximize their impact, and stakeholders considering the use of QSP models in their environment
The importance of anaemia in diagnosing colorectal cancer: a case–control study using electronic primary care records
Although anaemia is recognised as a feature of colorectal cancer, the precise risk is unknown. We performed a case–control study using electronic primary care records from the Health Improvement Network database, UK. A total of 6442 patients had a diagnosis of colorectal cancer, and were matched to 45 066 controls on age, sex, and practice. We calculated likelihood ratios and positive predictive values for colorectal cancer in both sexes across 1 g dl−1 haemoglobin and 10-year age bands, and examined the features of iron deficiency.In men, 178 (5.2%) of 3421 cases and 47 (0.2%) of 23 928 controls had a haemoglobin <9.0 g dl−1, giving a likelihood ratio (95% confidence interval) of 27 (19, 36). In women, the corresponding figures were 227 (7.5%) of 3021 cases and 58 (0.3%) of 21 138 controls, a likelihood ratio of 41 (30, 61). Positive predictive values increased with age and for each 1 g dl−1 reduction in haemoglobin. The risk of cancer for current referral guidance was quantified. For men over 60 years with a haemoglobin <11 g dl−1 and features of iron deficiency, the positive predictive value was 13.3% (9.7, 18) and for women with a haemoglobin <10 g dl−1 and iron deficiency, the positive predictive value was 7.7% (5.7, 11). Current guidance for urgent investigation of anaemia misses some patients with a moderate risk of cancer, particularly men
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
The development and operation of Liquid-Argon Time-Projection Chambers for
neutrino physics has created a need for new approaches to pattern recognition
in order to fully exploit the imaging capabilities offered by this technology.
Whereas the human brain can excel at identifying features in the recorded
events, it is a significant challenge to develop an automated, algorithmic
solution. The Pandora Software Development Kit provides functionality to aid
the design and implementation of pattern-recognition algorithms. It promotes
the use of a multi-algorithm approach to pattern recognition, in which
individual algorithms each address a specific task in a particular topology.
Many tens of algorithms then carefully build up a picture of the event and,
together, provide a robust automated pattern-recognition solution. This paper
describes details of the chain of over one hundred Pandora algorithms and tools
used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE
detector. Metrics that assess the current pattern-recognition performance are
presented for simulated MicroBooNE events, using a selection of final-state
event topologies.Comment: Preprint to be submitted to The European Physical Journal
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
The low-noise operation of readout electronics in a liquid argon time
projection chamber (LArTPC) is critical to properly extract the distribution of
ionization charge deposited on the wire planes of the TPC, especially for the
induction planes. This paper describes the characteristics and mitigation of
the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase
LArTPC comprises two induction planes and one collection sense wire plane with
a total of 8256 wires. Current induced on each TPC wire is amplified and shaped
by custom low-power, low-noise ASICs immersed in the liquid argon. The
digitization of the signal waveform occurs outside the cryostat. Using data
from the first year of MicroBooNE operations, several excess noise sources in
the TPC were identified and mitigated. The residual equivalent noise charge
(ENC) after noise filtering varies with wire length and is found to be below
400 electrons for the longest wires (4.7 m). The response is consistent with
the cold electronics design expectations and is found to be stable with time
and uniform over the functioning channels. This noise level is significantly
lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
- …