232 research outputs found

    Borane-Catalyzed Stereoselective C–H Insertion, Cyclopropanation, and Ring-Opening Reactions

    Get PDF
    Lewis acidic boranes have been shown to be effective metal-free catalysts for highly selective reactions of donor-acceptor diazo compounds to a range of substrates. The reactions of α-aryl α-diazoesters with nitrogen heterocycles indole or pyrrole selectively generate C3 and C2 C–H insertion products, respectively, in good to excellent yields even when using unprotected indoles. Alternatively, benzofuran, indene, and alkene substrates give exclusively cyclopropanated products with α-aryl α-diazoesters, whereas the reactions with furans lead to ring-opening. Comprehensive theoretical calculations have been used to explain the differing reactivities and high selectivities of these reactions. Overall, this work demonstrates the selective metal-free catalytic reactions of α-aryl α-diazoesters with (hetero)cycles and alkenes. This simple, mild reaction protocol represents an alternative to the commonly used precious metal systems and may provide future applications in the generation of biologically active compounds

    Borane catalyzed selective diazo cross-coupling towards pyrazoles

    Get PDF
    Decomposition of donor-acceptor diazo compounds leads to the formation of reactive carbene intermediates. These can undergo a wide variety of carbene transfer reactions to yield synthetically useful products. Herein, we report a selective borane catalyzed cyclization reaction from the combination of two different diazo compounds to afford N-substituted pyrazoles. The selective decomposition of the more reactive α-aryl α-diazoester and subsequent reaction with a vinyl diazoacetate produces N-alkylated pyrazoles in a regioselective manner. Catalytic amounts of tris(pentafluorophenyl)borane (10 mol%) were employed to afford the pyrazole products (36 examples) in yields from 59 to 80%. Extensive DFT studies have been undertaken to interpret the mechanism for this reaction which was found to go through two tandem catalytic cycles, both catalyzed by B(C6F5)3

    Site-selective Csp3–Csp/Csp3–Csp2 cross-coupling reactions using frustrated Lewis pairs

    Get PDF
    The donor–acceptor ability of frustrated Lewis pairs (FLPs) has led to widespread applications in organic synthesis. Single electron transfer from a donor Lewis base to an acceptor Lewis acid can generate a frustrated radical pair (FRP) depending on the substrate and energy required (thermal or photochemical) to promote an FLP into an FRP system. Herein, we report the Csp3–Csp cross-coupling reaction of aryl esters with terminal alkynes using the B(C6F5)3/Mes3P FLP. Significantly, when the 1-ethynyl-4-vinylbenzene substrate was employed, the exclusive formation of Csp3–Csp cross-coupled products was observed. However, when 1-ethynyl-2-vinylbenzene was employed, solvent-dependent site-selective Csp3–Csp or Csp3–Csp2 cross-coupling resulted. The nature of these reaction pathways and their selectivity has been investigated by extensive electron paramagnetic resonance (EPR) studies, kinetic studies, and density functional theory (DFT) calculations both to elucidate the mechanism of these coupling reactions and to explain the solvent-dependent site selectivity

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms

    Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence

    Get PDF
    Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Polyfunctional Hiv-Specific Antibody Responses Are Associated with Spontaneous Hiv Control

    Get PDF
    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure
    corecore