68 research outputs found

    A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β1 pathways

    Get PDF
    Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β1 and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-β1 effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-β1-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-β1-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis

    Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

    Get PDF
    Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model “Mitomouse” (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial

    Techniques of biliary drainage for acute cholecystitis: Tokyo Guidelines

    Get PDF
    The principal management of acute cholecystitis is early cholecystectomy. However, percutaneous transhepatic gallbladder drainage (PTGBD) may be preferable for patients with moderate (grade II) or severe (grade III) acute cholecystitis. For patients with moderate (grade II) disease, PTGBD should be applied only when they do not respond to conservative treatment. For patients with severe (grade III) disease, PTGBD is recommended with intensive care. Percutaneous transhepatic gallbladder aspiration (PTGBA) is a simple alternative drainage method with fewer complications; however, its clinical usefulness has been shown only by case-series studies. To clarify the clinical value of these drainage methods, proper randomized trials should be done. This article describes techniques of drainage for acute cholecystitis

    Ceramide profiling of stratum corneum in Sjögren–Larsson syndrome

    Get PDF
    Background: Sjogren-Larsson syndrome (SLS) is a neurocutaneous disorder whose causative gene is the fatty aldehyde dehydrogenase ALDH3A2 and of which ichthyosis is the major skin symptom. The stratum corneum contains a variety of ceramides, among which omega-O-acylceramides (acylceramides) and protein -bound ceramides are essential for skin permeability barrier formation.Objectives: To determine the ceramide classes/species responsible for SLS pathogenesis and the enzymes that are impaired in SLS. Methods: Genomic DNA was collected from peripheral blood samples from an SLS patient and her parents, and whole-genome sequencing and Sanger sequencing were performed. Lipids were extracted from stratum corneum samples from the SLS patient and healthy volunteers and subjected to ceramide profiling via liquid chromatography coupled with tandem mass spectrometry.Results: A duplication (c.55_130dup) and a missense mutation (p.Lys447Glu) were found in the patient's ALDH3A2 gene. The patient had reduced levels of all acylceramide classes, with total acylceramide levels at 25 % of healthy controls. Reductions were also observed for several nonacylated ceramides: ceramides with phytosphingosine or 6-hydroxysphingosine in the long-chain base moiety were reduced to 24 % and 41 % of control levels, respectively, and ceramides with an alpha-hydroxy fatty acid as the fatty acid moiety were re-duced to 29 %. The fatty acid moiety was shortened in many nonacylated ceramide classes.Conclusion: These results suggest that reduced acylceramide levels are a primary cause of the ichthyosis symptoms of SLS, but reductions in other ceramide classes may also be involved

    Influence of Sputtered ZnO and Al:ZnO Top Layers on Magneto-Optic Responses of Yttrium Iron Garnet Films

    No full text
    Zinc oxide (ZnO) is a promising material for combining with magneto-optic (MO) materials because it can propagate stable exciton-polaritons, with velocities considerably lower than that of photons in a vacuum. This study investigated the influence of sputtered ZnO and Al:ZnO top layers on MO responses of a bismuth-substituted yttrium iron garnet (Bi:YIG) film. The ZnO top layer modulated the Faraday rotation and magnetic circular dichroism (MCD) of the Bi:YIG around the exciton resonance wavelength of ZnO at 369 nm. Furthermore, Al-substituted ZnO, which is a conductive ZnO, also changed the MO effects around the exciton resonance wavelength. These results imply that the exciton-polaritons in ZnO affect the MO interaction, because of their considerably low group velocity. The results suggest potential for controlling the MO response via excitons
    corecore