52 research outputs found

    Calcineurin splicing variant calcineurin Aβ1 improves cardiac function after myocardial infarction without inducing hypertrophy

    Get PDF
    BACKGROUND: Calcineurin is a calcium-regulated phosphatase that plays a major role in cardiac hypertrophy. We previously described that alternative splicing of the calcineurin Aβ (CnAβ) gene generates the CnAβ1 isoform, with a unique C-terminal region that is different from the autoinhibitory domain present in all other CnA isoforms. In skeletal muscle, CnAβ1 is necessary for myoblast proliferation and stimulates regeneration, reducing fibrosis and accelerating the resolution of inflammation. Its role in the heart is currently unknown. METHODS AND RESULTS: We generated transgenic mice overexpressing CnAβ1 in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. In contrast to previous studies using an artificially truncated calcineurin, CnAβ1 overexpression did not induce cardiac hypertrophy. Moreover, transgenic mice showed improved cardiac function and reduced scar formation after myocardial infarction, with reduced neutrophil and macrophage infiltration and decreased expression of proinflammatory cytokines. Immunoprecipitation and Western blot analysis showed interaction of CnAβ1 with the mTOR complex 2 and activation of the Akt/SGK cardioprotective pathway in a PI3K-independent manner. In addition, gene expression profiling revealed that CnAβ1 activated the transcription factor ATF4 downstream of the Akt/mTOR pathway to promote the amino acid biosynthesis program, to reduce protein catabolism, and to induce the antifibrotic and antiinflammatory factor growth differentiation factor 15, which protects the heart through Akt activation. CONCLUSIONS: Calcineurin Aβ1 shows a unique mode of action that improves cardiac function after myocardial infarction, activating different cardioprotective pathways without inducing maladaptive hypertrophy. These features make CnAβ1 an attractive candidate for the development of future therapeutic approaches.British Heart Foundation [PG/07/020/22503]; Spanish Ministry of Science and Innovation [BFU2009-10016]; National Institutes of Health Research, Cardiovascular Biomedical Research Unit at the Royal Brompton; Hare-field NHS Foundation Trust; Imperial College; Spanish Fondo Nacional de Investigaciones Sanitarias [EIF-040545, ERG-239158, CP08/00144

    Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells

    Get PDF
    Foxp3+ regulatory T (Treg) cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs), including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3+ Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3+ Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation

    Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    Get PDF
    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study

    Extracellular High Mobility Group Box 1 Plays a Role in the Effect of Bone Marrow Mononuclear Cell Transplantation for Heart Failure

    Get PDF
    Transplantation of unfractionated bone marrow mononuclear cells (BMCs) repairs and/or regenerates the damaged myocardium allegedly due to secretion from surviving BMCs (paracrine effect). However, donor cell survival after transplantation is known to be markedly poor. This discrepancy led us to hypothesize that dead donor BMCs might also contribute to the therapeutic benefits from BMC transplantation. High mobility group box 1 (HMGB1) is a nuclear protein that stabilizes nucleosomes, and also acts as a multi-functional cytokine when released from damaged cells. We thus studied the role of extracellular HMGB1 in the effect of BMC transplantation for heart failure. Four weeks after coronary artery ligation in female rats, syngeneic male BMCs (or PBS only as control) were intramyocardially injected with/without anti-HMGB1 antibody or control IgG. One hour after injection, ELISA showed that circulating extracellular HMGB1 levels were elevated after BMC transplantation compared to the PBS injection. Quantitative donor cell survival assessed by PCR for male-specific sry gene at days 3 and 28 was similarly poor. Echocardiography and catheterization showed enhanced cardiac function after BMC transplantation compared to PBS injection at day 28, while this effect was abolished by antibody-neutralization of HMGB1. BMC transplantation reduced post-infarction fibrosis, improved neovascularization, and increased proliferation, while all these effects in repairing the failing myocardium were eliminated by HMGB1-inhibition. Furthermore, BMC transplantation drove the macrophage polarization towards alternatively-activated, anti-inflammatory M2 macrophages in the heart at day 3, while this was abolished by HMGB1-inhibition. Quantitative RT-PCR showed that BMC transplantation upregulated expression of an anti-inflammatory cytokine IL-10 in the heart at day 3 compared to PBS injection. In contrast, neutralizing HMGB1 by antibody-treatment suppressed this anti-inflammatory expression. These data suggest that extracellular HMGB1 contributes to the effect of BMC transplantation to recover the damaged myocardium by favorably modulating innate immunity in heart failure

    Effects of Interfacial Interactions on Electrocatalytic Activity of Cytochrome c Oxidase in Biomimetic Lipid Membranes on Gold Electrodes

    Get PDF
    Effects of interfacial interactions on the electrocatalytic activity of protein-tethered bilayer lipid membranes (ptBLMs) containing cytochrome c oxidase (CcO) for the oxygen reduction reaction are studied by using protein film electrochemistry and surface-enhanced infrared absorption (SEIRA) spectroscopy. Mammalian CcO was immobilized on a gold electrode via self-assembled monolayers (SAMs) of mixed alkanethiols. The protein orientation on the electrode is controlled by SAM–CcO interactions and is critical to the cytochrome c (cyt c) binding. The CcO–phospholipid and CcO–cyt c interactions modulate the electrocatalytic activity of CcO, and more densely packed ptBLMs show higher electrocatalytic activity. Our study indicates that spectroscopic and electrochemical studies of ptBLMs can provide insights into the effects of relatively weak protein–protein and protein–lipid interactions on the enzymatic activity of transmembrane enzymes

    Alternatively activated macrophages determine repair of the infarcted adult murine heart

    No full text
    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206(+)F4/80(+)CD11b(+) M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1(–/–)), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1(–/–) mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1(–/–) mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI

    A specific single-stranded DNA induces a distinct conformational change in the nucleoid-associated protein HU

    Get PDF
    AbstractIn prokaryotic cells, genomic DNA forms an aggregated structure with various nucleoid-associated proteins (NAPs). The functions of genomic DNA are cooperatively modulated by NAPs, of which HU is considered to be one of the most important. HU binds double-stranded DNA (dsDNA) and serves as a structural modulator in the genome architecture. It plays important roles in diverse DNA functions, including replication, segregation, transcription and repair. Interestingly, it has been reported that HU also binds single-stranded DNA (ssDNA) regardless of sequence. However, structural analysis of HU with ssDNA has been lacking, and the functional relevance of this binding remains elusive.In this study, we found that ssDNA induced a significant change in the secondary structure of Thermus thermophilus HU (TtHU), as observed by analysis of circular dichroism spectra. Notably, this change in secondary structure was sequence specific, because the complementary ssDNA or dsDNA did not induce the change. Structural analysis using nuclear magnetic resonance confirmed that TtHU and this ssDNA formed a unique structure, which was different from the previously reported structure of HU in complex with dsDNA. Our data suggest that TtHU undergoes a distinct structural change when it associates with ssDNA of a specific sequence and subsequently exerts a yet-to-be-defined function
    corecore