6 research outputs found

    Transcription Factors GATA/ELT-2 and Forkhead/HNF-3/PHA-4 Regulate the Tropomyosin Gene Expression in the Pharynx and Intestine of Caenorhabditis elegans

    Get PDF
    Gene regulation during development is an important biological activity that leads to synthesis of biomolecules at specific locations and specific times. The single tropomyosin gene of Caenorhabditis elegans, tmy-1/lev-11 produces four isoforms of protein: two from the external promoter and two from the internal promoter. We investigated the internal promoter of tropomyosin to identify sequences that regulate expression of tmy-1 in the pharynx and intestine. By promoter deletion of tmy-1 reporters as well as by database analyses, a 100 bp fragment was identified that contained binding sequences for a GATA factor, for a chicken CdxA homolog and for a forkhead factor. Both the forkhead and CdxA binding sequences contributed to pharyngeal and intestinal expression. In addition, the GATA site also influenced intestinal expression of tmy-1 reporter. We showed that ELT-2 and PHA-4 proteins interact directly with the GATA and forkhead binding sequences, respectively, in gel mobility shift assays. RNAi knockdown of elt-2 diminished tmy-1::gfp expression in the intestine. In contrast to RNAi knockdown of pha-4, expression of tmy-1::gfp in pha-4;smg-1 mutants was slightly weaker to that of the wild type. Ectopic expression of PHA-4 and ELT-2 by heat shock were sufficient to elicit widespread expression of tmy- 1::lacZ reporter in embryos. We found no indication of a synergistic relation between ELT-2 and PHA-4. Based on our data, PHA-4 and CdxA function as general transcription factors for pharyngeal and intestinal regulation of tmy-1. We present models by which ELT-2, PHA-4 and CdxA orchestrate expression from the internal promoter of tmy-1.</p

    Tissue-specific interactions of TNI isoforms with other TN subunits and tropomyosins in C. elegans: The role of the C- and N-terminal extensions

    Get PDF
    The aim of this study is to investigate the function of the C-terminal extension of three troponin I isoforms, that are unique to the body wall muscles of Caenorhabditis elegans and to understand the molecular interactions within the TN complex between troponin I with troponin C/T, and tropomyosin. We constructed several expression vectors to generate recombinant proteins of three body wall and one pharyngeal troponin I isoforms in Escherichia coli. Protein overlay assays and Western blot analyses were performed using antibodies. We demonstrated that pharyngeal TNI-4 interacted with only the pharyngeal isoforms of troponin C/T and tropomyosin. In contrast, the body wall TNI-2 bound both the body wall and pharyngeal isoforms of these components. Similar to other invertebrates, the N-terminus of troponin I contributes to interactions with troponin C. Full-length troponin I was essential for interactions with tropomyosin isoforms. Deletion of the C-terminal extension had no direct effect on the binding of the body wall troponin I to other muscle thin filament troponin C/T and tropomyosin isoforms
    corecore