254 research outputs found

    Neuronal Polarity: Positive and Negative Feedback Signals

    Get PDF
    Establishment and maintenance of neuronal polarity are critical for neuronal development and function. One of the fundamental questions in neurodevelopment is how neurons generate only one axon and several dendrites from multiple minor neurites. Over the past few decades, molecular and cell biological approaches have unveiled a large number of signaling networks regulating neuronal polarity in cultured hippocampal neurons and the developing cortex. Emerging evidence reveals that positive and negative feedback signals play a crucial role in axon and dendrite specification. Positive feedback signals are continuously activated in one of minor neurites and result in axon specification and elongation, whereas negative feedback signals are propagated from a nascent axon terminal to all minor neurites and inhibit the formation of multiple axon, thereby leading to dendrite specification, and maintaining neuronal polarity. This current insight provides a holistic picture of the signaling mechanisms underlying neuronal polarization during neuronal development. Here, our review highlights recent advancements in this fascinating field, with a focus on the positive, and negative feedback signals as key regulatory mechanisms underlying neuronal polarization

    Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust.

    Get PDF
    BackgroundA previous study has shown that the aggravation of Asian sand dust (ASD) on ovalbumin (OVA)-induced lung eosinphilia was more severe in lipopolysaccharide (LPS)-rich ASD than in SiO2-rich ASD. Therefore, the effects of different LPS contamination levels in ASD on the aggravation of OVA-induced lung eosinophilia were investigated in the present study.MethodsBefore beginning the in vivo experiment, we investigated whether the ultra-pure LPS would act only on TLR4 or not using bone marrow-derived macrophages (BMDMs) of wild-type, TLR2-/-, TLR4-/- and MyD88-/- BALB/c mice. ASD collected from the desert was heated to remove toxic organic substances (H-ASD). BALB/c mice were instilled intratracheally with 12 different testing samples prepared with LPS (1 ng and 10 ng), H-ASD, and OVA in a normal saline solution. The lung pathology, cytological profiles in the bronchoalveolar lavage fluid (BALF), the levels of inflammatory cytokines/chemokines in BALF and OVA-specific immunoglobulin in serum were investigated.ResultsThe LPS exhibited no response to the production of TNF-α and IL-6 in BMDMs from TLR4-/-, but did from TLR2-/-. H-ASD aggravated the LPS-induced neutrophilic lung inflammation. In the presence of OVA, LPS increased the level of eosinophils slightly and induced trace levels of Th2 cytokines IL-5 and IL-13 at the levels of 1 ng and 10 ng. In the presence of OVA and H-ASD, LPS induced severe eosinophil infiltration and proliferation of goblet cells in the airways as well as remarkable increases in Th2 cytokines IL-5 and IL-13 in BALF. The mixture containing LPS (1 ng) showed adjuvant activity on OVA-specific IgE and IgG1 production.ConclusionsThe results suggest that H-ASD with naturally-occurring levels of LPS enhances OVA-induced lung eosinophilia via increases in Th2-mediated cytokines and antigen-specific immunoglobulin. These results indicate that LPS is a strong candidate for being a major aggravating substance in ASD

    Decoherence of Phase Qubit using High-Tc Superconductor

    Full text link
    We discuss how to make use of high-Tc d-wave Josephson junctions in the construction of a phase qubit. We especially focus on the effect of the quasiparticle dissipation and the zero energy bound state on the macroscopic quantum tunneling which corresponds to the final measurement process of the d-wave phase qubit.Comment: 4 pages, 2 figures, to appear in Physica

    Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice.

    Get PDF
    BackgroundBjerkandera adusta (B. adusta) is one of the most important etiological fungi associated with chronic cough. However, precise details of the inflammatory response to exposure are not well understood yet. B. adusta was recently identified in Asian sand dust (ASD) aerosol. Therefore, in the present study the exacerbating effects of ASD on B. adusta-induced lung inflammation and B. adusta + ASD on ovalbumin (OVA)-induced murine lung eosinophilia were investigated using experimental mice.MethodsIn order to prepare testing samples, B. adusta obtained from ASD aerosol was inactivated by formalin and ASD collected from the atmosphere was heated to remove toxic organic substances (H-ASD). CD-1 mice were instilled intratracheally with 12 different samples prepared with various combinations of B. adusta, H-ASD, and OVA in a normal saline solution. The lung pathology, cytological profiles in bronchoalveolar lavage fluid (BALF), and the levels of inflammatory cytokines/chemokines in BALF were investigated.ResultsH-ASD aggravated the lung eosinophilia induced by B. adusta alone, which also aggravated the lung eosinophilia induced by OVA. The mixture of OVA, H-ASD, and B. adusta caused serious fibrous thickening of the subepithelial layer, eosinophil infiltration, and proliferation of goblet cells in the airways along with remarkable increases of IL-13, eotaxin, IL-5, and MCP-3 in BALF.ConclusionsThe results of the present study demonstrated that B. adusta isolated from ASD aerosol induces allergic lung diseases. H-ASD enhanced allergic reactions caused by OVA or B. adusta. A mixture of B. adusta, H-ASD, and OVA caused the most remarkable exacerbation to the allergic airway inflammation via remarkable increases of pro-inflammatory mediators

    New femoral remains of <i>Nacholapithecus kerioi</i>: Implications for intraspecific variation and Miocene hominoid evolution

    Get PDF
    The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16-15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese-Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck-shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing)

    CLASSIFICATION OF BIPOLAR DISORDER, MAJOR DEPRESSIVE DISORDER, AND HEALTHY STATE USING VOICE

    Get PDF
    Objective: In this study, we propose a voice index to identify healthy individuals, patients with bipolar disorder, and patients with major depressive disorder using polytomous logistic regression analysis.Methods: Voice features were extracted from voices of healthy individuals and patients with mental disease. Polytomous logistic regression analysis was performed for some voice features.Results: With the prediction model obtained using the analysis, we identified subject groups and were able to classify subjects into three groups with 90.79% accuracy.Conclusion: These results show that the proposed index may be used as a new evaluation index to identify depression

    Amorphization Effect for Kondo Semiconductor CeRu₂Al₁₀

    Get PDF
    We measured the magnetic susceptibility , electrical resistivity , and specific heat of a sputtered amorphous (a-)CeRu2Al10 alloy. value for a-CeRu2Al10 alloy follows a Curie-Weiss paramagnetic behavior in the high-temperature region, and magnetic transition was not observed down to 2 K. The effective paramagnetic moment is 1.19 /Ce-atom. The resistivity shows a typical disordered alloy behavior, that is, small temperature dependence for the whole temperature range. We observed an enhancement of and in the low-temperature region of  K. The enhancement in is suppressed by applying a magnetic field. It is suggested that this behavior is caused by the Kondo effect
    corecore