148 research outputs found

    Biochemical Computation for Spine Structural Plasticity

    Get PDF
    The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning, and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling are regulated in a complicated manner because of geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity.Video Abstrac

    RacGAP α2-Chimaerin Function in Development Adjusts Cognitive Ability in Adulthood

    Get PDF
    SummaryA major concern in neuroscience is how cognitive ability in adulthood is affected and regulated by developmental mechanisms. The molecular bases of cognitive development are not well understood. We provide evidence for the involvement of the α2 isoform of Rac-specific guanosine triphosphatase (GTPase)-activating protein (RacGAP) α-chimaerin (chimerin) in this process. We generated and analyzed mice with global and conditional knockouts of α-chimaerin and its isoforms (α1-chimaerin and α2-chimaerin) and found that α-chimaerin plays a wide variety of roles in brain function and that the roles of α1-chimaerin and α2-chimaerin are distinct. Deletion of α2-chimaerin, but not α1-chimaerin, beginning during early development results in an increase in contextual fear learning in adult mice, whereas learning is not altered when α2-chimaerin is deleted only in adulthood. Our findings suggest that α2-chimaerin acts during development to establish normal cognitive ability in adulthood

    Wide-area scanner for high-speed atomic force microscopy

    Get PDF
    High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ∼1 μm and ∼4 μm, respectively, making it infeasible to observe the dynamics of much larger samples, including live cells. Here, we develop a wide-area scanner with a maximum XY scan range of ∼46 × 46 μm2 by magnifying the displacements of stack piezoelectric actuators using a leverage mechanism. Mechanical vibrations produced by fast displacement of the X-scanner are suppressed by a combination of feed-forward inverse compensation and the use of triangular scan signals with rounded vertices. As a result, the scan speed in the X-direction reaches 6.3 mm/s even for a scan size as large as ∼40 μm. The nonlinearity of the X- and Y-piezoelectric actuators\u27 displacements that arises from their hysteresis is eliminated by polynomial-approximation-based open-loop control. The interference between the X- and Y-scanners is also eliminated by the same technique. The usefulness of this wide-area scanner is demonstrated by video imaging of dynamic processes in live bacterial and eukaryotic cells. © 2013 AIP Publishing LLC

    A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching

    Get PDF
    Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the C. elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, and with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE Regulatory Complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization

    TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles

    Get PDF
    BACKGROUND: Human respiratory epithelia function in airway mucociliary clearance and barrier function and have recently been implicated in sensory functions. OBJECTIVE: We investigated a link between chronic obstructive pulmonary disease (COPD) pathogenesis and molecular mechanisms underlying Ca2+ influx into human airway epithelia elicited by diesel exhaust particles (DEP). METHODS AND RESULTS: Using primary cultures of human respiratory epithelial (HRE) cells, we determined that these cells possess proteolytic signaling machinery, whereby proteinase-activated receptor-2 (PAR-2) activates Ca2+-permeable TRPV4, which leads to activation of human respiratory disease-enhancing matrix metalloproteinase-1 (MMP-1), a signaling cascade initiated by diesel exhaust particles (DEP), a globally relevant air pollutant. Moreover, we observed ciliary expression of PAR-2, TRPV4, and phospholipase-Cβ3 in human airway epithelia and their DEP-enhanced protein-protein complex formation. We also found that the chronic obstructive pulmonary disease (COPD)-predisposing TRPV4P19S variant enhances Ca2+ influx and MMP 1 activation, providing mechanistic linkage between man-made air pollution and human airway disease. CONCLUSION: DEP evoked protracted Ca2+ influx via TRPV4, enhanced by the COPD-predisposing human genetic polymorphism TRPV4P19S. This mechanism reprograms maladaptive inflammatory and extracellular-matrix-remodeling responses in human airways. The novel concept of air pollution-responsive ciliary signal transduction from PAR-2 to TRPV4 in human respiratory epithelia will accelerate rationally targeted therapies, possibly via the inhalatory route

    Behavioral and Transcriptome Profiling of Heterozygous Rab10 Knock-Out Mice

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.A central question in the field of aging research is to identify the cellular and molecular basis of neuroresilience. One potential candidate is the small GTPase, Rab10. Here, we used Rab101/ mice to investigate the molecular mecha-nisms underlying Rab10-mediated neuroresilience. Brain expression analysis of 880 genes involved in neurodegener-ation showed that Rab101/ mice have increased activation of pathways associated with neuronal metabolism, structural integrity, neurotransmission, and neuroplasticity compared with their Rab101/1 littermates. Lower activation was observed for pathways involved in neuroinflammation and aging. We identified and validated several differentially expressed genes (DEGs), including Stx2, Stx1b, Vegfa, and Lrrc25 (downregulated) and Prkaa2, Syt4, and Grin2d (upregulated). Behavioral testing showed that Rab101/ mice perform better in a hippocampal-dependent spatial task (object in place test), while their performance in a classical conditioning task (trace eyeblink classical condition-ing, TECC) was significantly impaired. Therefore, our findings indicate that Rab10 differentially controls the brain cir-cuitry of hippocampal-dependent spatial memory and higher-order behavior that requires intact cortex-hippocampal circuitry. Transcriptome and biochemical characterization of these mice suggest that glutamate ionotropic receptor NMDA type subunit 2D (GRIN2D or GluN2D) is affected by Rab10 signaling. Further work is needed to evaluate whether GRIN2D mediates the behavioral phenotypes of the Rab101/ mice. We conclude that Rab101/ mice de-scribed here can be a valuable tool to study the mechanisms of resilience in Alzheimer’s disease (AD) model mice and to identify novel therapeutical targets to prevent cognitive decline associated with normal and pathologic aging.ECU Open Access Publishing Support Fun
    • …
    corecore