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The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plas-
ticity, learning, andmemory. The process ismediated by a complex signaling network consisting of numerous
species ofmolecules. Furthermore, the spatiotemporal dynamicsof thebiochemical signaling are regulated in
a complicated manner because of geometrical restrictions from the unique morphology of the dendritic
branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotem-
poral aspects of the signal regulations in spines and dendrites and have providedmany insights into the prin-
ciple of the biochemical computation that underlies spine structural plasticity.
Dendritic spines are tiny postsynaptic protrusions covering

the dendrites of most of the principal neurons in the CNS. The

plasticity of the structure and the function of dendritic spines

are considered to be important for synaptic plasticity and

memory. Each dendritic spine consists of a small bulbous

head (�0.1 fl) connected to its parent dendrite through a narrow

neck (�0.1 mm in diameter and�0.5 mm in length). The neck acts

as a diffusional barrier and an electrical resistance, isolating the

spine head biochemically (Bloodgood and Sabatini, 2005; Svo-

boda et al., 1996) and electrically (Grunditz et al., 2008; Harnett

et al., 2012; Tønnesen et al., 2014) from its parent dendrite.

The structure and function of spines are regulated by bio-

chemical reactions mediated by calcium (Ca2+) and numerous

signaling molecules. The spatiotemporal dynamics of the bio-

chemical reaction are restricted in a complicated manner

because of the unique morphology of the spines and dendritic

shafts. Imaging studies have demonstrated that some signaling

activities are restricted to the spine to maintain the synaptic

specificity of long-term potentiation (LTP) (Lee et al., 2009; Saba-

tini et al., 2002; Yuste and Denk, 1995), whereas the other signals

spread locally along the dendritic shaft and nearby spines (Har-

vey et al., 2008; Murakoshi et al., 2011; Yasuda et al., 2006)

and distantly even into the nucleus, located a few hundred mi-

crometers away from the stimulated spines (Zhai et al., 2013).

Therefore, the distinct spatiotemporal dynamics of biochemical

signaling could have a large impact on the length and timescales

of various forms of synaptic plasticity. Here we review recent

findings demonstrating how the biochemical signals are initiated

at single spines and how they are transmitted, computed, and in-

tegrated at the distinct neuronal compartments to regulate the

functions of the spines and dendrites as well as the nucleus dur-

ing structural plasticity of the dendritic spines.

Structural Plasticity of Dendritic Spines
Remodeling of neuronal networks through activity-dependent

functional modification of synaptic connections and associated

structural changes of synapses is hypothesized to be a cellular

substrate of learning andmemory. Recent studies have revealed

that the morphology of the spine head, neck, and its substruc-
tures are modified dynamically during various forms of synaptic

plasticity.

Plasticity of Spine Heads

The volume of a spine head is proportional to the area of post-

synapticdensity (PSD) in the spine, thepresynaptic areaof its syn-

aptic partner, the number of synaptic AMPA receptors (AMPARs),

and the amplitude of the AMPAR-mediated currents (Harris and

Stevens, 1989; Matsuzaki et al., 2001; Schikorski and Stevens,

1997; Takumi et al., 1999). Therefore, themorphology of the spine

is tightly coupled with synaptic function, and a change in spine

volume has been considered to be an important substrate of syn-

aptic plasticity. Indeed, many studies have demonstrated that

LTP and long-term depression (LTD) are associated with spine

enlargement and shrinkage, respectively (Desmond and Levy,

1983; Hayama et al., 2013; Matsuzaki et al., 2004; Nägerl et al.,

2004;Ohet al., 2013;Okamotoet al., 2004; VanHarreveld andFif-

kova, 1975; Zhouet al., 2004). Studiesof spine structural plasticity

have been promoted by development of the two-photon gluta-

mateuncaging technique.This techniqueallowsone toselectively

stimulate a single spine while simultaneously imaging the

morphology of the stimulated spine with two-photon microscopy

(Matsuzaki et al., 2001). It hasbeen found that repetitiveglutamate

uncaging under low-Mg2+ (nominally zero) conditions induces a

rapid and transient enlargement of the spine head in the first

few minutes in hippocampal CA1 pyramidal neurons. This is fol-

lowed by a volume change sustained for hours (Lee et al., 2009;

Matsuzaki et al., 2004). Spine enlargements with similar time

course have also been observed in response to the standard

LTP induction protocol—high-frequency electrical stimulation of

Schaffer collateral axons in the presence of Mg2+ (Matsuzaki

et al., 2004). The morphological change of the stimulated spine

is associated with an increase in postsynaptic glutamate sensi-

tivity. These morphological and functional changes are observed

only in the stimulated spine but not in the neighboring spines, indi-

cating that LTP can be induced in an input-specific manner at the

single spine level (Figure1A). In thisReview,we refer to this formof

spine morphological plasticity as structural LTP.

Similar to functional LTP, there are two distinct temporal

stages in structural LTP: protein synthesis-independent, early
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Figure 1. Spine Structural Plasticity
(A) Structural plasticity during LTP. Repetitive
two-photon glutamate uncaging (0.5–2 Hz for
1 min) at a single spine under low-Mg2+ (nomi-
nally zero) conditions or paired with postsynaptic
depolarization induces a rapid enlargement of
the spine head in a few minutes. The volume of
the enlarged spine gradually decreases over
�5 min to a plateau and sustains for more than
an hour (Lee et al., 2009; Matsuzaki et al., 2004).
The PSD and presynapse increase with a delay
of 0.5–3 hr (Bosch et al., 2014; Meyer et al.,
2014). Note that the enlargement of the spine
volume is restricted to the stimulated spine
(input-specific LTP).
(B) Structural plasticity during LTD. Different pro-
tocols for LTD induction have been reported to
result in distinct structural plasticity. Low-fre-
quency glutamate uncaging (90 pulses at 0.1 Hz) in
low extracellular Ca2+ (0.3 mM) and Mg2+ (nomi-
nally zero) concentrations or paired with post-
synaptic depolarization induces a spine shrinkage
restricted to the stimulated spine (input-specific
LTD) (Oh et al., 2013) (top). b-AP paired with
subsequent two-photon glutamate uncaging pul-
ses (�10 ms) at a single spine (80 pulses at 1 Hz)
shortly after (<50 ms) GABA uncaging at the
adjacent dendritic shaft induces a reduction in
the volume of the stimulated spine as well as of
neighboring non-stimulated spines (spreading
depression) (Hayama et al., 2013) (center). The
optogenetic stimulation of presynaptic CA3 pyra-
midal neurons expressing channelrodopsin-2
(1 Hz for 900 light pulses) induces functional LTD
but not spine shrinkage in postsynaptic CA1 neu-
rons. However, a few days later, the stimulated
spine and many neighboring synapses are
removed (synapse-nonspecific spine pruning)
(Wiegert and Oertner, 2013) (bottom).
(C) Heterosynaptic LTD. LTP stimulation at multi-
ple spines on a single dendritic segment by
glutamate uncaging induces shrinkage of nearby
unstimulated spines (Oh et al., 2015).
(D) Spinogenesis induced by glutamate uncaging.
Two-photon glutamate uncaging (40 pulses at
2 Hz) at dendritic shafts triggers rapid de novo
spinogenesis in young neurons (Kwon and Saba-
tini, 2011).
(E) Synaptic crosstalk associated with structural
plasticity. Repetitive glutamate uncaging (30 pul-

ses at 0.5 Hz, 4-ms pulse duration) is applied to a single spine to induce LTP. A subthreshold stimulus (30 pulses at 0.5 Hz, 1-ms pulse duration), which by itself
does not trigger LTP, is then applied to a nearby spine. This induces a sustained structural and functional LTP in the weakly stimulated spine (Harvey and
Svoboda, 2007; Harvey et al., 2008).
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phase of LTP (E-LTP) and protein synthesis-dependent, late

phase of LTP (L-LTP) (Bosch et al., 2014; Govindarajan et al.,

2011). L-LTP can be induced in single spines by glutamate

uncaging paired with postsynaptic depolarization or the bath

application of BDNF or forskolin (an activator of cyclic AMP

[cAMP] signaling) (Govindarajan et al., 2011; Tanaka et al.,

2008a). Notably, structural and functional plasticity share at least

part of their signaling pathways. They both require Ca2+ influx

through postsynaptic NMDA receptors (NMDARs), activation of

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and small

GTPases, and actin polymerization (Harvey et al., 2008; Kim

et al., 2014; Lee et al., 2009; Matsuzaki et al., 2004; Murakoshi

et al., 2011). Although structural and functional plasticity can

be dissociated under some conditions (Kopec et al., 2007;

Sdrulla and Linden, 2007; Wang et al., 2007), these results sug-
64 Neuron 87, July 1, 2015 ª2015 Elsevier Inc.
gest a substantial overlap between the mechanisms underlying

LTP and spine enlargement.

In addition to LTP, two protocols to induce LTD and spine

shrinkage using two-photon glutamate uncaging have also

been found (Hayama et al., 2013; Oh et al., 2013). In the first pro-

tocol, low-frequency glutamate uncaging (0.1 Hz) in low-Ca2+

(0.3 mM) extracellular solution under postsynaptic depolariza-

tion or nominally zero Mg2+ can induce spine-specific LTD and

spine shrinkage (Figure 1B). The second protocol is much

more complicated. g-aminobutyric acid (GABA) uncaging at

the dendritic shaft �10 ms prior to back-propagating action po-

tentials (b-APs) followed by glutamate uncaging at single spines

has been found to induce LTD and spine shrinkage. Interestingly,

this protocol induces volume shrinkages in the surrounding, non-

stimulated spines locatedwithin�15 mmof the stimulated spines
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as well as in the stimulated spines (Figure 1B). This spreading

depression requires the suppression of bAP-evoked Ca2+ tran-

sients by GABA uncaging. GABA signaling does not appear

to encode precise timing information because simple phar-

macological activation of GABA receptors can replace GABA

uncaging.

Plasticity of Spine Necks

It has been speculated that spines serve as electrical compart-

ments because of the resistance at the necks (Segev and Rall,

1988). The electrical compartmentalization amplifies local excit-

atory postsynaptic potentials (EPSPs) within the spine and pro-

duces a voltage gradient between the spine and the dendritic

shaft, reducing dendritic and somatic EPSPs compared with

those in the spine. The voltagemay be amplified further in spines

with voltage-dependent conductance (Bywalez et al., 2015;

Grunditz et al., 2008; Yuste, 2013). Indirect estimates of spine

neck resistance, based on the cable theory or calculations

from the measured diffusional fluxes, vary greatly (Bloodgood

and Sabatini, 2005; Harris and Stevens, 1989; Svoboda et al.,

1996; Yuste, 2011). However, recent evidence has supported

the idea of electrical compartmentalization by the spine neck.

A study using whole-cell recordings with glutamate uncaging

at individual spines revealed that stimulation of spines with

longer necks produces smaller EPSPs at the soma in layer 5

pyramidal neurons (Araya et al., 2006, 2014), although no such

correlation was observed in olfactory bulb granule neurons

(Bywalez et al., 2015). In addition, Ca2+ transients within

spines through NMDARs and voltage-sensitive calcium chan-

nels (VSCCs) are evoked by subthreshold synaptic stimulation

to a degree consistent with the voltage amplification by spine

necks (Bloodgood et al., 2009; Grunditz et al., 2008; Kovalchuk

et al., 2000; Yuste and Denk, 1995). Voltage-gated sodium

channels have also been shown to be activated locally within

spines stimulated with glutamate uncaging, leading to the open-

ing of high voltage-activated Ca2+ channels in olfactory bulb

granule neurons (Bywalez et al., 2015). Furthermore, the ratio

of voltage changes in a spine head to that in its parent dendrite

has been quantified in CA1 pyramidal neurons using two-photon

glutamate uncaging in combination with Ca2+ imaging and den-

dritic patch clamping (Harnett et al., 2012). In this study, the

authors measured dendritic EPSPs and associated Ca2+ eleva-

tions in spines mediated exclusively by VSCCs in response to

two-photon glutamate uncaging (in the presence of inhibitors

of NMDARs and voltage-gated sodium channels). These den-

dritic EPSPs were compared with the voltage changes induced

by dendritic current injections to depolarize the spine to a level

where the associated spine Ca2+ signals match those produced

by the glutamate uncaging. The experiments revealed that spine

necks exhibit a high resistance of �500 MU and amplify the

depolarization in the spine heads associated with synaptic acti-

vation by 1.5- to 45-fold (Harnett et al., 2012). Although the exact

neck resistance is still unknown, these results suggest that

spines can act as electrical compartments.

Importantly, the function and morphology of the spine neck is

regulated dynamically by neuronal activities (Bloodgood and

Sabatini, 2005; Grunditz et al., 2008; Tønnesen et al., 2014).

Diffusional coupling between spines and dendrites has been

measured with fluorescence recovery after photobleaching
(FRAP) of fluorescent proteins or fluorescence decay after pho-

toactivation of photoactivatable GFP (PA-GFP). These studies

revealed that the coupling time increases in response to two-

photon glutamate uncaging at spines paired with b-APs or a

postsynaptic depolarization for a few minutes (Bloodgood and

Sabatini, 2005; Grunditz et al., 2008), suggesting that high

neuronal activity can cause higher neck resistance. In contrast,

a study found that protein synthesis-dependent LTP, induced

by two-photon glutamate uncaging paired with b-APs, is

coupled with widening of the spine neck (Tanaka et al., 2008a).

Furthermore, a recent study using superresolution imaging

based on stimulated emission depletion (STED) demonstrated

that the spine necks become wider and shorter after LTP

induced by two-photon glutamate uncaging (Tønnesen et al.,

2014; Figure 1A). Therefore, it appears that LTP induction leads

to the lowering of spine neck resistance. However, because the

neck widening counteracts the increased biochemical compart-

mentalization by head enlargement, the degree of the diffusional

coupling between spine and dendrite appears not to be altered

during structural LTP (Tønnesen et al., 2014). The reduction of

neck resistance should decrease the voltage amplification in

spines and, therefore, may reduce the probability of further in-

duction of LTP. On the other hand, a shorter and wider neck

may facilitate the transport of resources from the dendrites into

the spines undergoing LTP (Tønnesen et al., 2014).

Because spine neck plasticity can change electrical filtering

by the neck, it could be one mechanism to change EPSPs

at the soma during synaptic plasticity (Araya et al., 2014). How-

ever, according to a mathematical simulation using measured

spine morphology with superresolution microscopy, spine

neck plasticity has relatively minor effects on the amplitude of

somatic EPSPs in the passive regime (Tønnesen et al., 2014).

Therefore, the roles of spine neck plasticity appear to be mainly

regulations of local voltage amplification in spines and biochem-

ical compartmentalization.

The molecular mechanisms underlying spine neck plasticity

are unknown, but several proteins have been identified to

be localized at spine necks. In particular, septins, a highly

conserved family of GTPases, are known to assemble into a

hetero-oligomeric complex and higher-order structures such

as filaments, rings, and gauzes. Interestingly, it has been re-

ported that septin 7 forms a complex with septin 5/11, localizes

at the base of spine necks (Tada et al., 2007; Xie et al., 2007), and

serves as a diffusion barrier of membrane proteins, including

GluA2 (Ewers et al., 2014). Because septins regulate the com-

partmentalization of the yeast plasma membrane during mitosis

by forming rings at the bud necks (Barral et al., 2000; Takizawa

et al., 2000), they may also play an important role in regulating

the morphology of the spine neck. Further, a recent study has

demonstrated that Ankyrin-G, a protein that acts as an adaptor

to connect transmembrane proteins to the underlying spectrin-

actin cytoskeleton, forms distinct nanodomains within spine

heads and necks (Smith et al., 2014). Interestingly, the nanodo-

main confines AMPARs in spines, possibly acting as a diffusion

barrier. In addition, the presence of Ankyrin-G at the spine

neck is tightly associated with the larger head volume. When

the 190-kDa isoform of Ankyrin-G, a major isoform in spines, is

overexpressed, the neck width as well as the head volume are
Neuron 87, July 1, 2015 ª2015 Elsevier Inc. 65
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Figure 2. The Spatiotemporal Dynamics of Signaling Activities during Structural LTP
(A) The timescale of signaling activities during structural LTP induced by two-photon glutamate uncaging (0.5–20 Hz). Spine-specific signals and spreading
signals are indicated in green and orange, respectively. The timing of glutamate uncaging of a typical LTP induction protocol (0.5 Hz) is shown by red bars.
(B) Ca2+ elevation; activities of CaN, CaMKII, Cdc42, RhoA, H-Ras, cofilin, and nuclear ERK; and the accumulation of Homer1b during structural LTP induced at a
single spine or seven spines (ERK). The arrows and circles show the spines stimulated with glutamate uncaging. Scale bars, 10 mm for ERK and 1 mm for others.
The images were adopted and modified from Zhai et al. (2013) for Ca2+ and ERK, Fujii et al. (2013) for CaN, Lee et al. (2009) for CaMKII, Murakoshi et al. (2011) for
RhoA and Cdc42, Harvey et al. (2008) for H-Ras, and Bosch et al. (2014) for cofilin and Homer1b, with permission. Ca2+ elevation is visualized with a Ca2+ in-
dicator, Fluo-4FF (green) and Alexa 594 (red). Ca2+ elevation in response to the first uncaging pulse during the LTP induction protocol (1 Hz, 60 pulses) is dis-
played. CaMKII, Cdc42, RhoA, H-Ras, cofilin, and nuclear ERK activities are imaged with 2pFLIM combined with FRET sensors. CaN activities are visualized with
dual FRET with optical manipulation (dFOMA). The accumulation of Homer1b in spines is visualized with GFP-tagged Homer1b and RFP (cell fill). Note that Ca2+

elevation and activation of CaMKII, Cdc42, and cofilin are restricted to the stimulated spines, whereas activation of CaN, RhoA, and H-Ras spread into the
dendritic shafts and nearby spines.
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increased significantly. These results suggest that septin and

Ankyrin-G may regulate the morphology and function of spine

necks during spine structural plasticity.

Plasticity of PSDs and Presynapses

Spine head volume is tightly correlated with the size of the

presynaptic active zone and PSD (Harris and Stevens, 1989;

Schikorski and Stevens, 1997; Takumi et al., 1999). Therefore,

spine growth associated with LTP should be accompanied by

a growth in the active zone, PSD, and, potentially, other spine

substructures. Indeed, recent studies have revealed that this is

the case at the single-spine level. Within the initial few minutes
66 Neuron 87, July 1, 2015 ª2015 Elsevier Inc.
after LTP induction, the actin cytoskeleton grows, and actin

and actin binding proteins such as profilin and cofilin are accu-

mulated rapidly in the stimulated spine (Bosch et al., 2014). In

contrast, the amount of PSD proteins and PSD size do not

increase at this temporal stage (Bosch et al., 2014; Steiner

et al., 2008). However, with a delay of a few hours, PSD scaf-

fold proteins such as Homer1b, PSD-95, and shank1b slowly

accumulate, and the size of the PSD increases (Bosch et al.,

2014; Meyer et al., 2014; Figure 2). These changes have been

found to be followed by the slow growth of the presynaptic

terminals, suggesting the existence of dynamic retrograde
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signaling during glutamate uncaging-evoked LTP (Meyer et al.,

2014). These results suggest that, overall, synaptic structures

are gradually rescaled over a few hours following LTP induction

(Figure 1A).

Interestingly, SynGAP, one of the most abundant proteins in

the PSD (Cheng et al., 2006), is dissociated from the PSD within

a few minutes of chemical LTP induction (Araki et al., 2015). This

dispersion state of SynGAP is sustained for more than half an

hour. Because SynGAP is an inactivator of Ras, a signaling pro-

tein required for themaintenance of LTP (Harvey et al., 2008; Zhu

et al., 2002), de-localization of SynGAPmay help to increase Ras

activity in stimulated spines, thereby stabilizing LTP. Although it

is not clear whether the amount of SynGAP in the PSD eventually

follows the size of the PSD or not, the protein content of the PSD

and spines appears to be changed dramatically during spine

structural plasticity.

Spine Formation and Elimination

In addition to changes in the structure of preexisting spines, LTP

induction has also been found to be associated with the forma-

tion of new spines and filopodia (Engert and Bonhoeffer, 1999;

Maletic-Savatic et al., 1999; Nägerl et al., 2004, Nagerl et al.,

2007; Toni et al., 1999). A study has demonstrated that two-

photon glutamate uncaging at dendritic shafts in young layer

2/3 pyramidal neurons in the cortex is sufficient to induce rapid

de novo spinogenesis within a few micrometers of the stimu-

lated spot and within several tens of seconds during the gluta-

mate uncaging stimuli (Kwon and Sabatini, 2011; Figure 1D).

The newly formed spines are functional because they produce

Ca2+ transients in response to synaptic stimulation. This study

also demonstrated that spine formation does not necessarily

require an intermediate filopodium stage and that glutamate is

sufficient to assemble the machinery required for nucleating

spine formation. The long-term stabilization of newly formed

spines appears to require further potentiation (Hill and Zito,

2013).

On the other hand, it has been known that LTD induction can

cause eliminations of preexisting spines in an NMDAR-depen-

dent manner (Figure 1B; Bastrikova et al., 2008; Nägerl et al.,

2004; Okamoto et al., 2004; Zhou et al., 2004). A recent study

followed the fate of spines up to 7 days after LTD induction in

organotypic hippocampal slices (Wiegert and Oertner, 2013).

By combining the optogenetic stimulation of presynaptic CA3

pyramidal neurons expressing channelrodopsin-2 with calcium

imaging of spines in postsynaptic CA1 neurons expressing

GCaMP3, synapses were stimulated optically, and the activities

of individual synapses were monitored with Ca2+ responses. In

this paradigm, they observed reductions of the success rate

and the amplitude of postsynaptic Ca2+ transients after LTD in-

duction, suggesting that this form of LTD is induced by both

postsynaptic and presynaptic mechanisms. Interestingly, after

a few days of LTD induction, these depressed synapses and their

neighbors were eliminated (Figure 1B). The delayed elimination

of depressed synapses seems not to be correlated with the de-

gree of the initial LTD, but, rather, the synapses with an initially

low probability of neurotransmitter release (measured before

LTD induction) tend to be eliminatedmore selectively. Therefore,

over days after LTD, the stimulated neurons change the way in

which they adjust synaptic strength from an ‘‘analog’’ regulation
in the potency of each synapse to a ‘‘digital’’ regulation in the

number of synapses.

Heterosynaptic Plasticity in Dendritic Segments

Although individual synapses can serve as independent com-

putational units, it has been reported that there is heterosy-

naptic spreading of functional plasticity (Abraham, 2008).

Recent studies, by utilizing two-photon glutamate uncaging,

have shown that several forms of heterosynaptic plasticity

can occur even at the single-spine level. For example, LTP in-

duction at a single spine with glutamate uncaging lowers the

threshold for LTP induction at surrounding spines (Harvey

and Svoboda, 2007; Harvey et al., 2008; Figure 1E). The reduc-

tion in the threshold for LTP induction, or ‘‘cross-talk’’ of synap-

tic plasticity, lasts �10 min and spreads over �10 mm along the

dendritic shaft. In addition, the induction of protein synthesis-

dependent LTP induced by glutamate uncaging combined

with a bath application of forskolin can reduce the threshold

for LTP induction at surrounding spines (Govindarajan et al.,

2011). This heterosynaptic facilitation occurs within �70 mm

of the stimulated spine and lasts �90 min. Moreover, in young

neurons, repetitive glutamate uncaging at single spines re-

duces the induction threshold for glutamate-induced spinogen-

esis in the surrounding area for at least a few minutes (Kwon

and Sabatini, 2011). In addition to the facilitation of LTP on sur-

rounding synapses, it has been known that LTP induction in

one set of synapses causes LTD in the other set of synapses

on the same cell (Abraham et al., 1994; Doyère et al., 1997).

Similar to this so-called ‘‘heterosynaptic LTD,’’ it has been re-

vealed recently that the LTP induction of multiple spines on a

single dendritic segment can cause spine shrinkage and synap-

tic weakening of nearby unstimulated spines located within a

few micrometers (Figure 1C; Oh et al., 2015). These results

strongly suggest that intracellular signaling factors can spread

from the stimulated spines and have a large impact on the sur-

rounding dendritic spines.

Biochemical Computation in Dendritic Branches for
Structural Plasticity
In the past decades, signaling pathways leading to LTP and LTD

have been studied extensively with pharmacological, genetic,

and biochemical tools. These studies have revealed that Ca2+

influx through synaptic NMDARs triggers a variety of signaling

pathways, which, in turn, induces long-lasting changes in post-

synaptic sensitivity to glutamate and/or the probability of gluta-

mate release from presynaptic terminals (Bliss and Collingridge,

2013; Bredt and Nicoll, 2003; Enoki et al., 2009; Huganir and Nic-

oll, 2013; Zakharenko et al., 2001). Imaging techniques based on

Förster resonance energy transfer (FRET) enable the measure-

ment of spatiotemporal dynamics of biochemical signaling activ-

ity in living cells. However, these techniques have been difficult

to implement because of small fluorescence from the tiny volume

of spines and strong light scattering by brain tissue. The devel-

opment of two-photon fluorescence lifetime imaging micro-

scopy (2pFLIM) in combination with highly optimized FRET-

based biosensors has overcome these limitations and allowed

researchers to directly monitor biochemical signal transduction

at single-spine resolution (Yasuda, 2006, 2012; Yasuda et al.,

2006). Using this and other imaging techniques, the detailed
Neuron 87, July 1, 2015 ª2015 Elsevier Inc. 67
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spatiotemporal dynamics of signal transduction during synaptic

plasticity have been revealed.

Calcium Sensing

Synaptic stimulation produces a short Ca2+ transient largely

restricted to the stimulated spines (Mainen et al., 1999; Noguchi

et al., 2005; Sobczyk and Svoboda, 2007; Yuste and Denk,

1995). The Ca2+ transient lasts only �0.1 s and, when repeated,

initiates biochemical signal transduction crucial for LTP and LTD

(Figure 2). When Ca2+ flows into the spine through NMDARs, it

binds to calmodulin (CaM) and activates CaMKII. It has been

well established that this Ca2+-CaM-CaMKII signaling cascade

is the first reaction necessary for LTP induction (Lisman et al.,

2012; Figure 2A). The kinetics of CaMKII activation during struc-

tural LTP were determined by imaging of CaMKII activities using

2pFLIM in combination with a FRET-based CaMKII sensor (Lee

et al., 2009; Takao et al., 2005). It has been revealed that the

induction of LTP with glutamate uncaging in CA1 pyramidal

neurons triggers rapid CaMKII activation restricted to the stimu-

lated spine. This activity decays with a time constant of �10 s

(Figure 2B). These results suggest that CaMKII serves as a relay

to extend the short Ca2+ transient at a timescale of milliseconds

to the signal at a timescale of seconds (Figure 2). Therefore,

downstream signaling molecules are required to further extend

signals for the persistence of LTP over the course of minutes

or hours.

In addition to CaMKII, calcineurin (CaN), a calcium-dependent

phosphatase, has been found to be activated during spine

enlargement in dissociated neurons (Fujii et al., 2013). In this

study, the authors developed a dual FRET system and simulta-

neously imaged activities of CaMKII and CaN in response to

glutamate uncaging at single spines. They reported that strong

uncaging stimuli can activate both CaMKII and CaN with similar

temporal dynamics with an activation time window of 1 min

(Figure 2A). However, the spatial profiles of their activations are

distinct. Although CaMKII activation is compartmentalized within

the stimulated spines, CaN activity spreads over several micro-

meters and invades adjacent spines (Figure 2B). When stimula-

tion is weak, only CaN is activated, and the activation is

restricted to the stimulated spines. The spreading of CaN from

stimulated spines may be important for heterosynaptic LTD

because this form of LTD depends on CaN (Oh et al., 2015).

Regulation of the Actin Cytoskeleton

Actin filaments constitute the major cytoskeleton of dendritic

spines and, therefore, are an important determinant of spine

morphology. Actin monomers in the spine cytoskeleton undergo

continuous and rapid turnover because of their dynamic cycles

between monomeric G-actin and filamentous F-actin, called

treadmilling (Chazeau et al., 2014; Frost et al., 2010; Honkura

et al., 2008; Star et al., 2002). Because the equilibration is

more shifted toward F-actin at one end (barbed end) than at

the other end (pointed end), each actin monomer undergoes a

cycle of binding to the barbed end, moving toward the pointed

end, and unbinding at the pointed end. Therefore, the flow of

actin monomers caused by treadmilling indicates the direction

of the filaments. The dynamics of treadmilling within a spine

have been observed using photoactivation of PA-GFP tagged

actin, and these studies revealed a retrograde flow of actin

monomers from the tip to the base of spines (Frost et al., 2010;
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Honkura et al., 2008). However, recent superresolution imaging

studies based on single-particle tracking combined with photo-

activated localization microscopy (PALM) have demonstrated

that the direction of actin flow is highly inhomogeneous and

unoriented in spine heads (Chazeau et al., 2014; Frost et al.,

2010). In contrast, the flow is more oriented, directed toward

the dendritic shaft in the spine neck (Frost et al., 2010). The un-

oriented flow of actin is consistent with the relatively unorganized

structure of the actin cytoskeleton in spines observed in electron

microscopy (Korobova and Svitkina, 2010).

Because functional andstructural LTP require actin reorganiza-

tion (KimandLisman, 1999;Krucker et al., 2000; Langet al., 2004;

Matsuzaki et al., 2004; Okamoto et al., 2004), signaling pathways

associated with actin polymerization and depolymerization have

been studied intensively. Among them, small GTPases, including

Ras, Rho, Cdc42, and Rac, and their downstreammolecules are

known to play critical roles in actin reorganization, spinemorpho-

genesis, and LTP. 2pFLIM imaging of small GTPase activities,

including H-Ras, Cdc42, and RhoA, have shown that the induc-

tion of LTP at single spines similarly activates these small

GTPaseswithin�1minof LTP induction (Harveyet al., 2008;Mur-

akoshi et al., 2011;Oliveira andYasuda, 2014).However, interest-

ingly, their activation profiles are very different. The activities for

Cdc42 and RhoA, but not H-Ras, are sustained for more than

30 min. Notably, Cdc42 activity is restricted to the stimulated

spine, whereas H-Ras and RhoA activities are not compartmen-

talized and spread over �5–10 mm of the dendrite and invade

nearby spines (Figure 2B). Inhibition of CaMKII using KN62 or

autocamtide CaMKII inhibitor peptide (AIP2) inhibited the activa-

tionsofH-Ras,Cdc42, andRhoA, indicating that thesemolecules

are downstream of CaMKII (Harvey et al., 2008; Murakoshi et al.,

2011). Furthermore, pharmacological inhibition of p21-activated

kinase (PAK) and Rho kinase (ROCK), which are the effectors

for Cdc42 and RhoA, respectively, inhibited structural LTP (Mur-

akoshi et al., 2011). Therefore, the Ca2+-CaMKII-Cdc42 pathway

constitutes spine-specific signal transduction, spanning a time-

scale of milliseconds to more than half an hour to cause syn-

apse-specific plasticity (Figure 2A).

Activation of small GTPases is known to lead to the activation

of actin binding proteins, including cofilin and Arp2/3 (Figure 3). A

recent study has shown that cofilin is accumulated rapidly and

persistently at the stimulated spine after LTP induction with

two-photon glutamate uncaging (Bosch et al., 2014). Imaging

the cofilin-actin and cofilin-cofilin interactions with 2pFLIM

showed sustained increases of these interactions in the stimu-

lated spines (Figure 2B). These results suggest that LTP induces

the formation of a stable actin-cofilin complex restricted to the

potentiated spine. Pharmacological analysis suggests that cofi-

lin activation requires several kinases, including LIM kinase

(LIMK), PAK, and ROCK (Figure 3). Therefore, overall, cofilin

seems to be one of the most important factors that link small

GTPase signaling and structural LTP. Interestingly, cofilin also

plays an important role in AMPAR trafficking (Gu et al., 2010),

further supporting the important role of cofilin in LTP and spine

enlargement. In addition to cofilin, Arp2/3 is highly enriched in

dendritic spines and generates de novo actin filaments of a

branched architecture found in the spine head (Korobova and

Svitkina, 2010; Racz and Weinberg, 2008). Arp2/3 is activated
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by downstream molecules of Rac and Cdc42. Loss of Arp2/3

completely blocks structural LTP but not LTD (Kim et al.,

2013). Therefore, both cofilin and Arp2/3 seem to converge

downstream of small GTPases to regulate structural LTP via

actin remodeling (Figure 3).

Mechanisms and Roles of Signal Spreading

The fact that biochemical signals can spread from stimulated

spines to their parent dendritic shafts is not surprising because

diffusion is extremely efficient at a micrometer-length scale.

For cytosolic and membrane-bound proteins, it takes only

�0.3 and�5s todiffuseout of the spine, respectively (Bloodgood

and Sabatini, 2005; Harvey et al., 2008; Murakoshi et al., 2011).

For diffusible transmembrane proteins like AMPAR, it takes

�30 s (Borgdorff and Choquet, 2002; Patterson et al., 2010).

On the other hand, the sustained compartmentalization of

signaling in spines requires specific mechanisms. For example,

Cdc42 is as mobile as H-Ras and RhoA, but only Cdc42 activa-

tion is highly restricted in the stimulated spine (Murakoshi et al.,

2011). One possible mechanism is to rapidly inactivate the mole-

cules before their spreading (Yasuda and Murakoshi, 2011).

Spreading signals likely play important roles in many forms of

heterosynaptic plasticity, such as the facilitation of LTP and het-

erosynaptic depression in the surrounding area (see above). In

this respect, it is interesting that many subcellular compartments

required for synaptic plasticity exist outside of the spine. For

example, recycling endosomes containing AMPARs are often

found in dendritic shafts and translocated into the spines during

LTP (Park et al., 2006). Also, the protein synthesis machinery is

located in the dendritic shaft (Buxbaum et al., 2014; Ostroff

et al., 2002; Steward and Levy, 1982). This arrangement seems

to be optimized for signal spreading over several micrometers.

The spread of signaling may also contribute to the induction of

plasticity in a clustered fashion and create a local accumulation

of synaptic inputs that, in turn, results in the functional compart-

mentalization of dendritic segments (Branco and Häusser, 2010;

Govindarajan et al., 2006; Larkum and Nevian, 2008). Clustered
Neu
plasticity has been found in several para-

digms in vivo. For example, sensory

deprivation by whisker trimming can

induce the accumulation of super-ecliptic

pHluorin (SEP)-tagged GluA1 in spines

located within a short stretch (�10 mm)

of dendritic branches of layer 2/3 pyrami-

dal neurons in the somatosensory cortex

(Makino and Malinow, 2011). Similarly,

acute whisker stimulation leads to an in-

crease in the intensity of SEP-GluA1 in

spines and adjacent dendritic shafts in a

subset of dendrites of layer 2/3 pyramidal

neurons in the somatosensory cortex

(Zhang et al., 2015). Furthermore, motor

learning-dependent spinogenesis in layer

5 pyramidal neurons in the motor cortex
appears to be clustered in dendritic branches and shows a

spatial correlation over�1 mm (Fu et al., 2012). In addition, spon-

taneous activities of adjacent spines are frequently synchronized

in CA3 pyramidal neurons in organotypic hippocampal slice cul-

tures (Kleindienst et al., 2011; Takahashi et al., 2012). Further

studies will be required to reveal whether heterosynaptic plas-

ticity and synaptic crosstalk are associated with clustered plas-

ticity and input synchronization.

New Protein Synthesis in Dendrites

It is known that local translation of mRNAs in dendrites plays an

important role in maintaining L-LTP and L-LTD (Costa-Mattioli

et al., 2009; Huber et al., 2000; Kang and Schuman, 1996; Sutton

and Schuman, 2006). Because of the significance of protein syn-

thesis in the maintenance of synaptic plasticity, several sensors

for the visualization of newly synthesized proteins have been

developed. For example, newly synthesized proteins can be

imaged using destabilized GFP (dGFP) regulated by the UTR of

the mRNA encoding a target protein (Aakalu et al., 2001).

Because the lifetime of dGFP is short (�2 h), only newly synthe-

sized proteins are visible. However, this method cannot be used

for fused proteins because the stability of dGFPmay be changed

by the fusion. Theoretically, fluorescence recovery after photo-

conversion of photoconvertible fluorescent proteins or FRAP of

fluorescent proteins fused with a target protein should report

newly synthesized proteins. However, it appears that these pro-

cedures cause significant phototoxcity when applied over entire

neurons (Lin et al., 2008). These limitations were overcome by

the development of an engineered protein tag named time-spe-

cific tagging for the age measurement of proteins (TimeSTAMP).

TimeSTAMP encodes the protease flanked by two cleavage

sites, an epitope tag, and a protein of interest (Lin et al., 2008).

The epitope tag is removed from the proteins of interest by

the protease immediately after translation. The application of a

specific inhibitor of the protease initiates the accumulation of

the newly synthesized, epitope-tagged protein, which can be

detected with subsequent immunostaining. In a more recent
ron 87, July 1, 2015 ª2015 Elsevier Inc. 69
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version of TimeSTAMP, a protein of interest is fused with split

yellow fluorescent protein (YFP) with the protease and its recog-

nition sites (Butko et al., 2012). The protease cleavage separates

the split YFP domains before the formation of the YFP chro-

mophore. The application of the protease inhibitor allows chro-

mophore formation, enabling highly sensitive, low-background

imaging of the newly synthesized protein fused with YFP in living

neurons. The PSD-95 coding sequence, including the 30 UTR
fused with fluorescent TimeSTAMP, revealed that PSD-95 is,

indeed, newly synthesized in response to local dendritic stimula-

tion of BDNF and mGluR5 and localized preferentially to stimu-

lated synapses (Butko et al., 2012).

Although the functional significance of dendritic translation is

evident, how local translation is regulated by synaptic activity

has remained elusive. A recent study revealed a newmechanism

that regulates dendritic translation by visualizing single endoge-

nous b-actin mRNA molecules with single-molecule fluores-

cence in situ hybridization (FISH) (Buxbaum et al., 2014). It has

been shown that �50% of dendritic b-actin mRNA molecules

aremasked by forming complexes with RNA granules containing

densely packed ribosomes. b-actin mRNA and rRNA in these

complexes are inaccessible by the FISH probes and, presum-

ably, inactive for translation. Chemically induced LTP increased

the number of b-actin mRNA and rRNA molecules that can be

probed with FISH, suggesting that mRNA unmasking occurred

in dendrites. The same stimulation also increased the mobility

of ribosomes and b-actin mRNA molecules in dendrites, indi-

cating thatmRNA and ribosomes are released from the complex.

These results suggest that RNA granules containing mRNAs and

ribosomes exist in a suppressed state along the dendrites and

that LTP induction could prompt the disassembly of the com-

plexes, releasing mRNA and ribosomes to induce local transla-

tion in dendrites.

Biochemical Computation between the Spine and
Nucleus for Structural Plasticity
Several forms of LTP and memory that last longer than several

hours require gene transcription as well as translation (Bliss

and Collingridge, 1993; Costa-Mattioli et al., 2009; Cracco

et al., 2005; Kelleher et al., 2004; Sutton and Schuman, 2006).

Gene transcription is regulated by various protein kinase cas-

cades, including the CaMKK-CaMKIV, Ras-Raf-MEK-ERK, and

cAMP-PKA pathways. Activation of these kinases leads to the

phosphorylation of transcription factors such as cAMP-respon-

sive element-binding (CREB) and Elk-1 to produce new mRNAs

required for L-LTP (Alberini, 2009). Conversely, CaN is also acti-

vated by neuronal activity and dephosphorylates and activates

the transcription factor myocyte enhancer factor 2 (MEF2). This

activates MEF2-dependent transcription, leading to the elimina-

tion of excitatory synapses (Barbosa et al., 2008; Cole et al.,

2012; Flavell et al., 2006; Pulipparacharuvil et al., 2008). There-

fore, activity-dependent transcription can regulate the persis-

tence of synaptic plasticity as well as the structural refinement

of synaptic connections. However, little is known about the

mechanisms of long-distance signaling from the synapse to

the nucleus and from the nucleus back to the synapse. To couple

synaptic activities with changes in gene expression, there must

be somemechanism that links local synaptic events in individual
70 Neuron 87, July 1, 2015 ª2015 Elsevier Inc.
spines and signals to the nucleus. This may be mediated by

somatic membrane depolarization caused by the activation of

a population of synapses (Adams and Dudek, 2005) or the

propagation of regenerative Ca2+ waves from the stimulated

synapses to the nucleus mediated by the ER (Ch’ng and Martin,

2011). Additionally, recent studies have demonstrated that the

signaling between the synapse and nucleus can be mediated

by biochemical cascades.

Signal Spreading from Single Spines to the Nucleus

In response to single-spine stimulation, signaling mediated by

RhoA, CaN, and H-Ras spreads over �5–10 mm (Fujii et al.,

2013; Harvey et al., 2008; Murakoshi et al., 2011; Figure 2B).

The spreading of biochemical signaling may be extended further

to much longer distances to activate signaling in the nucleus.

This possibility has been explored recently using 2pFLIM and a

FRET sensor for ERK activity (Zhai et al., 2013). Because ERK

is a downstream effector molecule of H-Ras, the diffusion of

H-Ras could cause long-distance spreading of ERK activity. It

has been demonstrated that the induction of LTP at only a few

(three to seven) spines is sufficient to activate ERK in the nucleus

(Figure 2B). Furthermore, immunostaining showed that down-

stream transcription factors, including CREB and Elk1, are also

activated in response to stimulation of a few spines in an ERK-

dependent manner. These results suggest that the activation

of a small number of spines has a profound impact on the activa-

tion of nuclear signaling that regulates gene transcription. The

onset of nuclear ERK activation is 5–30 min after stimulation

and shows a greater delay when distal dendrites are stimulated.

The delay is consistent with the diffusion of cytosolic proteins

from the spine to the nucleus, suggesting that the diffusion of

ERK may be an important factor for the process. The signal

can be integrated over surprisingly long times (more than

30 min) and space (�80 mm). Furthermore, the spatially

dispersed inputs over multiple branches activated nuclear ERK

much more efficiently than clustered inputs over one branch.

The preference of sparse inputs over multiple dendrites appears

to be caused by saturation of ERK activation in response to

the stimulation of a few dendritic spines on a branch. In this

situation, stimulating more than a few spines in one branch will

not increase signaling to the nucleus. Instead, the number of

stimulated branches is critical for increasing signals in the

nucleus. Therefore, the dendritic branch seems to act as a

biochemical computation unit, and supersensitive integration in

each branch plays an important role in controlling synapse-to-

nucleus signaling.

In addition to signal spreading via diffusion, energy-dependent

transport via motor proteins seems to play important roles in

synapse-to-nucleus signaling. One proposed mechanism is the

transmission of signals via molecular messengers that are disso-

ciated from the stimulated synapse and delivered to the nucleus.

Interestingly, synapses contain various proteins with a nuclear

localization signal (NLS) that are localized both in synapses

and the nucleus (Jordan and Kreutz, 2009). Importin a is one of

these proteins, and it functions as an adaptor that binds an

NLS-containing cargo and forms a heterotrimeric complex with

importin b1 to facilitate the transport of this complex into the nu-

cleus following LTP-inducing stimuli (Goldfarb et al., 2004; Jef-

frey et al., 2009; Thompson et al., 2004). Importantly, several
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transcriptional regulators, including CREB, necrosis factor kB

(NF-kB), and Jacob, have been shown to be translocated into

the nucleus in response to synaptic activities via the importin-

dependent pathway (Jordan and Kreutz, 2009; Karpova et al.,

2013). For example, Jacob has been found to be a synapto-

nuclear messenger containing an NLS. Following synaptic but

not extrasynaptic NMDAR activation, Jacob is phosphorylated

by ERK, which causes the dissociation of Jacob from spines,

leading to its translocation into the nucleus in an importin

a-dependent manner. The presence of phosphorylated Jacob

in the nucleus increases CREB phosphorylation, inducing

the expression of CRE-dependent genes (Karpova et al.,

2013). Furthermore, CREB-regulated transcriptional coactivator

1 (CRTC1) is also translocated from the synapses to the nucleus

and binds to CREB to upregulate CRE-dependent transcription

(Kovács et al., 2007; Zhou et al., 2006). CRTC1 nuclear translo-

cation requires the Ca2+-CaN pathway, and the persistent accu-

mulation of CRTC1 in the nucleus requires the cAMP pathway

(Ch’ng et al., 2012; Nonaka et al., 2014).

It is likely that neither simple diffusion nor active transport are

efficient enough to alter transcription in the nucleus. The volume

of the nucleus is several thousand times bigger than that of a

single spine, and, therefore, the impact of each spine should

be very small. Because only a few spines can drive nuclear signal

activation, there must be some mechanisms to amplify signal

by orders of magnitude. A signaling cascade with multiple steps

(for example, the classical Ras-Raf-MEK-ERK pathway) may be

able to dramatically amplify signaling. Amore robust mechanism

would be regenerative signal amplification by positive feedback.

For example, a computational model predicts that the duration

of LTD in cerebellar Purkinje cells is prolonged by a positive

feedback loop consisting of protein kinase C (PKC), mitogen-

activated protein kinase (MAPK), and phospholipase A2 (PLA2)

(Kuroda et al., 2001). Later it was shown that the reciprocal

activations of PKC to MAPK and MAPK to PKC are required

for cerebellar LTD and that this positive feedback loop causes

PKC to be active more than 20 min (Tanaka and Augustine,

2008). This kind of mechanism could also be used for amplifying

the signal at single spines to effect gene transcription in the

nucleus.

Biochemical Signaling from the Nucleus Back to the

Spine

Given that L-LTP is specific to stimulated spines, the newly tran-

scribed and synthesized proteinsmust function specifically in the

activated spines. Therefore, there must be specific interactions

between the newly synthesized proteins and the activated

spines during L-LTP. This can be explained by the synaptic

tag-and-capture hypothesis. In this mechanism, LTP induction

generates a protein ‘‘tag’’ (or a state of molecules) only at poten-

tiated synapses, which can capture newly synthesized plasticity-

related protein/products (PRPs) specifically induced by L-LTP

(Frey and Morris, 1997; Redondo and Morris, 2011). Although

the molecular identity is largely unknown, this hypothesis has

provided a framework to account for the protein synthesis-

dependent synaptic plasticity. PRPs that have been implicated

in synaptic plasticity include Homer1a, Arc, andGluA1 (Redondo

and Morris, 2011). Among these proteins, Homer1a, a postsyn-

aptic scaffolding protein and a major immediate early gene, has
been shown to be specifically recruited from the soma to the

stimulated spine with synaptic activities, supporting the synaptic

tag hypothesis (Okada et al., 2009). The synaptic tag can be a

temporary state of the synapse that is represented by multiple

proteins and their interactions, like the structure of the actin cyto-

skeleton (Redondo and Morris, 2011). For example, it is known

that LTP induction causes the formation of a stable pool of F-actin

(Honkura et al., 2008; Okamoto et al., 2004) that potentially exists

as cofilin-actin co-helices (Bosch et al., 2014). This newly formed

pool of F-actin can act as a synaptic tag (Okamoto et al., 2004,

2009; Ramachandran and Frey, 2009). Interestingly, synaptic

tagging appears to occur not only at stimulated spines but also

at non-stimulated spines. Following LTP induction, Arc, an imme-

diate early gene necessary for spatial learning and fear memory

(Guzowski et al., 2000; Plath et al., 2006; Ploski et al., 2008), is

accumulated in non-stimulated spines and excluded frompoten-

tiated spines (Okuno et al., 2012). The amount of synaptic Arc

was correlated negatively with the amount of surface GluA1 in

synapses, consistent with previous studies suggesting that Arc

weakens synapses by promoting endocytosis of AMPARs

(Chowdhury et al., 2006). Therefore, inverse synaptic tagging

by Arc may help to maintain the contrast of synaptic weight

changes between active and inactive synapses during L-LTP

by removing surface AMPARs from non-stimulated spines.

Concluding Remarks
We have described the mechanisms and roles of spatiotemporal

regulation of biochemical signaling in neurons during spine

structural plasticity. Recent advances in optical techniques

have revealed new mechanisms of biochemical computation

that underlie various forms of synaptic plasticity. Two-photon

uncaging of neurotransmitters has enabled researchers to study

the spatiotemporal regulation of homo-and heterosynaptic plas-

ticity and synaptic crosstalk at the level of single spines (Figure 1).

Imaging of signal transduction with FRET/FLIM techniques has

allowed the spatiotemporal pattern of biochemical signaling initi-

ated at single spines to be accessed directly. These studies have

collectively provided many insights into the dynamic regulation

of biochemical signaling in neuronal compartments during struc-

tural plasticity. In the temporal axis, it has been found that

signaling is transmitted in multiple stages during structural LTP

(Figures 2 and 3). First, a short Ca2+ signal (�0.1 s) is integrated

by CaMKII activation over seconds to �1 min. Second, the tran-

sient CaMKII signal is further relayed to several small GTPases

and their downstream kinases, which leads to actin remodeling

over the course of minutes to hours. Finally, PSDs and presynap-

tic structures are reorganized over hours. On the spatial axis,

it has been revealed that biochemical computation occurs in

multiple-length scales from a single spine to a short stretch of

dendrite around the spine and a whole dendritic branch (Figures

2 and 3). Biochemical signaling can spread further into the nu-

cleus and regulate gene transcription.

To understand the more complicated aspects of signal trans-

duction, including positive and negative feedforward and feed-

back loops, it is necessary to manipulate signals with high

spatiotemporal resolution while imaging signal transduction. In

this area, various tools to regulate protein activities with

light have been developed (Kennedy et al., 2010; Lee et al.,
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2014; Levskaya et al., 2009; Tyszkiewicz and Muir, 2008; Wu

et al., 2009; Yazawa et al., 2009; Zhou et al., 2012). By combining

FRET/FLIM imaging with the optical manipulation of protein ac-

tivities, the mechanisms underlying spatiotemporal signal regu-

lation in neurons may be clarified. Another future challenge will

be to find out how the operating principles of signal transduction

during synaptic plasticity in vitro can be applied to learning and

memory of animals in vivo. Imaging of spine structural plasticity

during learning and memory in vivo has been performed by

several groups (Holtmaat et al., 2006; Lai et al., 2012; Moczulska

et al., 2013; Xu et al., 2009; Yang et al., 2009). Applying FRET-

FLIM imaging in vivo will allow us to link findings based on

controlled stimulation in slices with molecular mechanisms of

learning and memory. Continued development of optical tech-

niques will help to elucidate the operating principles of biochem-

ical computation mediated by complicated signaling networks in

neurons.
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