461 research outputs found

    Genomic structure of a copy of the human TPTE gene which encompasses 87kb on the short arm of chromosome 21

    Get PDF
    Abstract.: The testis-expressed human TPTE is a putative transmembrane tyrosine phosphatase, probably involved in signal transduction pathways of the endocrine and/or the spermatogenetic function of the testis. TPTE was mapped to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. It is unknown which of the TPTE copies are transcribed, contain intronic sequences, and/or have open reading frames. Here, in silico analysis of the genomic sequence of human chromosome 21 allowed the determination of the genomic structure of a copy of the TPTE gene. This copy consists of 24 exons and spans approximately 87kb. The mapping position of this copy of TPTE on the short arm of chromosome 21 was confirmed by FISH using the BAC 15L0C0 clone as a probe that contains almost the entire TPTE gene. This is the first description of the genomic sequence of a non-RNR gene on the short arm of human acrocentric chromosome

    Screening of human gene promoter activities using transfected-cell arrays

    No full text
    Promoters are the best characterized transcriptional regulatory sequences in complex genomes because of their predictable location immediately upstream of transcription start sites. Despite a substantial body of literature describing transcriptional promoters, the identification of true start sites for all human transcripts is far from complete. The same is true of the key structural and functional elements responsible for promoter action in different cell types. In order to identify elements responsible for promoter activity, we applied transfected-cell array technology to functionally evaluate promoters for genes involved in inflammatory bowel disease. Seventy-four promoters were examined by reverse transfection of a promoter-fluorescent reporter constructs into a human embryonic kidney cell line (HEK293T). Sixteen (21.6%) promoters were found to be active in HEK293 T cells. Correlations between promoter activity and endogenous transcript level were calculated, and 75% of active promoters were found to be associated with transcriptional activity of their gene counterparts. These results provide experimental evidence of promoter activity, which may aid in understanding the regulation of gene expression. Moreover, this is the first large-scale functional study of regulatory sequences to use a high-throughput transfected-cell array technique

    Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters

    Get PDF
    Given the inherent limitations of in silico studies relying solely on DNA sequence analysis, the functional characterization of mammalian promoters and associated cis-regulatory elements requires experimental support, which demands cloning and analysis of putative promoter regions. Focusing on human chromosome 21, we cloned 182 gene promoters of 2500 bp in length and conducted reporter gene assays on transfected-cell arrays. We found 56 promoters that were active in HEK293 cells, while another 49 promoters could be activated by treatment of cells with Trichostatin A or depletion of serum. We observed high correlations between promoter activities and endogenous transcript levels, RNA polymerase II occupancy, CpG islands and core promoter elements. Truncation of a subset of 62 promoters to ∼500 bp revealed that truncation rarely resulted in loss of activity, but rather in loss of responses to external stimuli, suggesting the presence of cis-regulatory response elements within distal promoter regions. In these regions, we found a strong enrichment of transcription factor binding sites that could potentially activate gene expression in the presence of stimuli. This study illustrates the modular functional architecture of chromosome 21 promoters and helps to reveal the complex mechanisms governing transcriptional regulatio

    Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    Get PDF
    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease

    Cancer Precision Medicine: Why More Is More and DNA Is Not Enough

    Get PDF
    Every tumour is different. They arise in patients with different genomes, from cells with different epigenetic modifications, and by random processes affecting the genome and/or epigenome of a somatic cell, allowing it to escape the usual controls on its growth. Tumours and patients therefore often respond very differently to the drugs they receive. Cancer precision medicine aims to characterise the tumour (and often also the patient) to be able to predict, with high accuracy, its response to different treatments, with options ranging from the selective characterisation of a few genomic variants considered particularly important to predict the response of the tumour to specific drugs, to deep genome analysis of both tumour and patient, combined with deep transcriptome analysis of the tumour. Here, we compare the expected results of carrying out such analyses at different levels, from different size panels to a comprehensive analysis incorporating both patient and tumour at the DNA and RNA levels. In doing so, we illustrate the additional power gained by this unusually deep analysis strategy, a potential basis for a future precision medicine first strategy in cancer drug therapy. However, this is only a step along the way of increasingly detailed molecular characterisation, which in our view will, in the future, introduce additional molecular characterisation techniques, including systematic analysis of proteins and protein modification states and different types of metabolites in the tumour, systematic analysis of circulating tumour cells and nucleic acids, the use of spatially resolved analysis techniques to address the problem of tumour heterogeneity as well as the deep analyses of the immune system of the patient to, e.g., predict the response of the patient to different types of immunotherapy. Such analyses will generate data sets of even greater complexity, requiring mechanistic modelling approaches to capture enough of the complex situation in the real patient to be able to accurately predict his/her responses to all available therapies

    Matrin 3 Binds and Stabilizes mRNA

    Get PDF
    Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3′s role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer

    No full text
    Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA
    corecore