221 research outputs found

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Measurement of CP violation parameters and polarisation fractions in Bs0J/ψK0 {\mathrm{B}}_{\mathrm{s}}^0\to \mathrm{J}/\psi {\overline{\mathrm{K}}}^{\ast 0} decays

    Get PDF
    The first measurement of C ⁣P{C\!P} asymmetries in the decay Bs0J/ψK(892)0{B_s^0\to J/\psi \overline{K}^{*}(892)^{0}} and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0fb13.0\,fb^{-1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 77 and 8TeV8\,\mathrm{TeV}. Together with constraints from B0J/ψρ0{B^0\to J/\psi \rho^0}, the results are used to constrain additional contributions due to penguin diagrams in the C ⁣P{C\!P}-violating phase ϕs{{\phi}_{s}}, measured through Bs0{B_s^0} decays to charmonium.The first measurement of CP asymmetries in the decay Bs0J/ψK(892)0 {B}_s^0\to J/\psi {\overline{\mathrm{K}}}^{\ast }{(892)}^0 and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb^{−}^{1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Together with constraints from B0^{0} → J/ψ ρ0^{0}, the results are used to constrain additional contributions due to penguin diagrams in the CP -violating phase ϕs_{s} , measured through Bs0_{s}^{0} decays to charmonium.The first measurement of C ⁣P{C\!P} asymmetries in the decay Bs0J/ψK(892)0{B_s^0\to J/\psi \overline{K}^{*}(892)^{0}} and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0fb13.0\,fb^{-1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 77 and 8TeV8\,\mathrm{TeV}. Together with constraints from B0J/ψρ0{B^0\to J/\psi \rho^0}, the results are used to constrain additional contributions due to penguin diagrams in the C ⁣P{C\!P}-violating phase ϕs{{\phi}_{s}}, measured through Bs0{B_s^0} decays to charmonium

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11pb1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Observation of the decay Λb0 → pK−μ+μ− and a search for CP violation

    Get PDF
    A search for CP violation in the decay Λb 0 → pK−μ+μ− is presented. This decay is mediated by flavour-changing neutral-current transitions in the Standard Model and is potentially sensitive to new sources of CP violation. The study is based on a data sample of proton-proton collisions recorded with the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The Λb 0 → pK−μ+μ− decay is observed for the first time, and two observables that are sensitive to different manifestations of CP violation are measured, (Formula Presented.)where the latter is based on asymmetries in the angle between the μ+μ− and pK− decay planes. These are measured to be(Formula Presented.)and no evidence for CP violation is found.[Figure not available: see fulltext.].</p

    Measurement of forward WeνW\to e\nu production in pppp collisions at s=8\sqrt{s}=8\,TeV

    Get PDF
    A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eν production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb1^{−1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eν, are measured to be σW+e+νe=1124.4±2.1±21.5±11.2±13.0pb, {\sigma}_{W^{+}\to {e}^{+}{\nu}_e}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\kern0.5em \mathrm{p}\mathrm{b}, σWeνe=809.0±1.9±18.1±7.0±9.4pb, {\sigma}_{W^{-}\to {e}^{-}{\overline{\nu}}_e}=809.0\pm 1.9\pm 18.1\pm \kern0.5em 7.0\pm \kern0.5em 9.4\,\mathrm{p}\mathrm{b}, where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination

    Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays

    Get PDF
    A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0μ+μB^0_s\to\mu^+\mu^- and B0μ+μB^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb1^{-1}. An excess of Bs0μ+μB^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0μ+μ)=(3.0±0.60.2+0.3)×109{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0μ+μB^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0μ+μ)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0μ+μB^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0μ+μ)<3.4×1010{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(ppD0X)=1004±3±54μb,σ(ppD+X)=402±2±30μb,σ(ppDs+X)=170±4±16μb,σ(ppD+X)=421±5±36μb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Management of uterine adenomyosis: current trends and uterine artery embolization as a potential alternative to hysterectomy

    No full text
    Abstract Adenomyosis is a challenging clinical condition that is commonly being diagnosed in women of reproductive age. To date, many aspects of the disease have not been fully understood, making management increasingly difficult. Over time, minimally invasive diagnostic and treatment methods have developed as more women desire uterine preservation for future fertility or to avoid major surgery. Several uterine-sparing treatment options are now available, including medication, hysteroscopic resection or ablation, conservative surgical methods, and high-intensity focused ultrasound each with its own risks and benefits. Uterine artery embolization is an established treatment option for uterine fibroids and has recently gained ground as a safe and cost-effective method for treatment of uterine adenomyosis with promising results. In this review, we discuss current trends in the management of uterine adenomyosis with a special focus on uterine artery embolization as an alternative to hysterectomy
    corecore