12 research outputs found

    The Relationship between Capital Flight, Labor Migration and Economic Growth

    Get PDF
    Capital flight and labor migration have been increasing in developing nation like Pakistan. This study is used to check the relationship between capital flight, labor migration and economic growth of Pakistan. Time series data is used from 1983-2014 for variables like unemployed labor, capital outflow, unemployment and political instability. Different techniques such as unit root test, granger causality test, ordinary least square and two stages least square are used. Granger causality test showed that capital flight and economic growth have bidirectional causality, while labor migration and economic growth showed unidirectional causality. Two stage least square showed that political instability, labor migration, capital flight and unemployment have the negative impact on the economic growth of Pakistan. Political and security situation should be improved for better economic growth

    The Relationship between Capital Flight, Labor Migration and Economic Growth

    Get PDF
    Capital flight and labor migration have been increasing in developing nation like Pakistan. This study is used to check the relationship between capital flight, labor migration and economic growth of Pakistan. Time series data is used from 1983-2014 for variables like unemployed labor, capital outflow, unemployment and political instability. Different techniques such as unit root test, granger causality test, ordinary least square and two stages least square are used. Granger causality test showed that capital flight and economic growth have bidirectional causality, while labor migration and economic growth showed unidirectional causality. Two stage least square showed that political instability, labor migration, capital flight and unemployment have the negative impact on the economic growth of Pakistan. Political and security situation should be improved for better economic growth

    Response of wheat varieties to salinity: growth, yield and ion analysis

    Get PDF
    In plants, development, growth and yield most severely affected through saline soil/water in growth medium, ultimately cause severe threat to global food production for human being. Wheat (Triticum aestivum) is the most edible crop in Pakistan. Production of this crop can be improved through using marginal areas with the help of growing salt-tolerant varieties. The present investigation is carried out to screen out six local wheat varieties (F.Sarhad, Insaf, Lalma, Tatora, Bathoor and Barsat) with reference to their vegetative and reproductive growth, different physiological parameters [relative water content (RWC), electrolyte-leakage (EL) and leaf water loss (LWL)] and ionic status of plants. Present experiment designed in completely randomized manner (CRD) and 54 pots were arranged in the Botanical Garden, Department of Botany. These pots arranged in 6 lines with 9 pots/line and each line was irrigated with non-saline (control), 50 mM and 150 mM NaCl solution. The data from present research revealed that application of salt cause significant reduction in plant-height, root-length, fresh-biomass, dry-biomass, seed number/plant, seed weight/plant, spike-weight, relative water content, leaf water loss, and different ions of plants. Similarly at same applied doses of salt weight of 100 seeds, spike-length, electrolyte-leakage, Na+ and Cl- ions become increased. It has been concluded from the results of present study that varieties F. Sarhad, Insaf and Lalma exhibited more salt tolerance as compare to other varieties. So, these recommended for growing on moderately salt affected soil/water to achieve more yield of wheat from such affected lands of Khyber Pakhtunkhwa, Pakistan

    Effect of Serine on Growth and Biochemical Constituents of Zea mays L., Triticum aestivum L., and Abelmoschus esculentus L. under Arsenic Toxicity

    Get PDF
    Background: Various human activities, such as industrialization, modern farming methods, and mining increase the concentration of heavy metals in air, water and soil. Heavy metal poisoning of soil results in a number of environmental issues and has deleterious effects on both plants and animals. Therefore, the purpose of this study was to investigate the effects of Arsenite (As) and As+ Serine (Ser) on growth and biochemical components in the early growth stages of Abelmoschus esculentus (L.) Moench, Triticum aestivum L., and Zea mays L. (selected crops).Methods: Pot experiments were carried out at completely random manner, with 10-12 seeds grown in each pot with three replicates. Seeds and seedlings in pots treated with different concentrations of As and As+Ser. After a 21-days of germination period, we gathered the growth-related parameters (root number, root length, shoot length, and leaf number) and conducted a biochemical analysis.Results: The growth of selected plants was adversely impacted by Arsenic stress, whereas the detrimental impact was minimal after treatments with Serine. Compression of the selected crops showed that Abelmoschus esculentus L. had the most detrimental impact on agronomic parameters. Biochemical constituents such Chlorophyll “a” “b”, Total-chlorophyll (Photosynthetic pigments), protein and carotenoid contents formation were reduced at individual treatments of As (25, 50, 75 and 100pmm) compared to As+Ser and control treatment, while the proline contents were increased considerably at treatment 100 ppm (As) of the selected crops.Conclusion: The results showed that As had a greater negative impact on growth and biochemical constituents, whereas Ser had a reduced adverse impact on selected crops. Abelmoschus esculentusL. had a higher sensitivity compared to other selected crops

    Chemical composition and pharmacological bio-efficacy of Parrotiopsis jacquemontiana (Decne) Rehder for anticancer activity

    Get PDF
    Consistent STAT3 (Single transducer and activator of transcription 3) activation is observed in many tumors and promotes malignant cell transformation. In the present investigation, we evaluated the anticancer effects of Parrotiopsis jacquemontiana methanol fraction (PJM) on STAT3 inhibition in HCCLM3 and MDA-MB 231 cells. PJM suppressed the activation of upstream kinases i.e. JAK-1/2 (Janus kinase-1/2), and c-Src (Proto-oncogene tyrosine-protein kinase c-Src), and upregulated the expression levels of PIAS-1/3 (Protein Inhibitor of Activated STATs-1/3), SHP-1/2 (Src-homology region 2 domain-containing phosphatase-1/2), and PTP-1β (Protein tyrosine phosphatase 1 β) which negatively regulate STAT3 signaling pathway. PJM also decreased the levels of protein products conferring to various oncogenes, which in turn repressed the proliferation, migration, invasion, and induced apoptosis in cancer cell lines. The growth inhibitory effects of PJM on cell-cycle and metastasis were correlated with decreased expression levels of CyclinD1, CyclinE, MMP-2 (Matrix metalloproteinases-2), and MMP-9 (Matrix metalloproteinases-9). Induction of apoptosis was indicated by the cleavage and subsequent activation of Caspases (Cysteine-dependent Aspartate-directed Proteases) i.e. caspase-3, 7, 8, 9, and PARP (Poly (ADP-ribose) polymerase) as well as through the down-regulation of anti-apoptotic proteins. These apoptotic effects of PJM were preceded by inhibition of STAT3 cell-signaling pathway. STAT3 was needed for PJM-induced apoptosis, and inhibition of STAT3 via pharmacological inhibitor (Stattic; SC-203282) abolished the apoptotic effects. Conclusively, our results demonstrate the capability of PJM to inhibit cancer cell-proliferation and induce apoptosis by suppressing STAT3 via upregulation of STAT3 inhibitors and pro-apoptotic proteins whereas the down-regulation of upstream kinases and anti-apoptotic protein expression. In future, one-step advance studies of PHM regarding its role in metastatic inhibition, immune response modulation for reducing tumor, and inducing apoptosis in suitable animal models would be an interesting and promising research area

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Exploring Physical Characterization and Different Bio-Applications of <i>Elaeagnus angustifolia</i> Orchestrated Nickel Oxide Nanoparticles

    No full text
    Elaeagnus angustifolia (EA) mediated green chemistry route was used for the biofabrication of NiONPs without the provision of additional surfactants and capping agents. The formation of NiONPs was confirmed using advanced different characterization techniques such as Scanning electron microscopy, UV, Fourier transmission-infrared, RAMAN, and energy dispersal spectroscopic and dynamic light scattering techniques. Further, different biological activities of EA-NiONPs were studied. Antibacterial activities were performed using five different bacterial strains using disc-diffusion assays and have shown significant results as compared to standard Oxytetracycline discs. Further, NiONPs exhibited excellent antifungal performance against different pathogenic fungal strains. The biocompatibility test was performed using human RBCs, which further confirmed that NiONPs are more biocompatible at the concentration of 7.51–31.25 µg/mL. The antioxidant activities of NiONPs were investigated using DPPH free radical scavenging assay. The NiONPs were demonstrated to have much better antioxidant potentials in terms of % DPPH scavenging (93.5%) and total antioxidant capacity (81%). Anticancer activity was also performed using HUH7 and HEP-G2 cancer cell lines and has shown significant potential with IC50 values of 18.45 μg/mL and 14.84 μg/mL, respectively. Further, the NiONPs were evaluated against Lesihmania tropica parasites and have shown strong antileishmanial potentials. The EA-NiONPs also showed excellent enzyme inhibition activities; protein kinase (19.4 mm) and alpha-amylase (51%). In conclusion, NiONPs have shown significant results against different biological assays. In the future, we suggest various in vivo activities for EA-NiONPs using different animal models to further unveil the biological and biomedical potentials

    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications

    No full text
    Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects
    corecore