2,127 research outputs found

    Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications

    Get PDF
    The aim of this review is to summarize the most relevant contributions in the development of electrochemical sensors based on carbon materials in the recent years. There have been increasing numbers of reports on the first application of carbon derived materials for the preparation of an electrochemical sensor. These include carbon nanotubes, diamond like carbon films and diamond film-based sensors demonstrating that the particular structure of these carbon material and their unique properties make them a very attractive material for the design of electrochemical biosensors and gas sensors. Carbon nanotubes (CNT) have become one of the most extensively studied nanostructures because of their unique properties. CNT can enhance the electrochemical reactivity of important biomolecules and can promote the electron-transfer reactions of proteins (including those where the redox center is embedded deep within the glycoprotein shell). In addition to enhanced electrochemical reactivity, CNT-modified electrodes have been shown useful to be coated with biomolecules (e.g., nucleic acids) and to alleviate surface fouling effects (such as those involved in the NADH oxidation process). The remarkable sensitivity of CNT conductivity with the surface adsorbates permits the use of CNT as highly sensitive nanoscale sensors. These properties make CNT extremely attractive for a wide range of electrochemical sensors ranging from amperometric enzyme electrodes to DNA hybridization biosensors. Recently, a CNT sensor based fast diagnosis method using non-treated blood assay has been developed for specific detection of hepatitis B virus (HBV) (human liver diseases, such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma caused by hepatitis B virus). The linear detection limits for HBV plasma is in the range 0.5–3.0 μL−1 and for anti- HBVs 0.035–0.242 mg/mL in a 0.1 M NH4H2PO4 electrolyte solution. These detection limits enables early detection of HBV infection in suspected serum samples. Therefore, non-treated blood serum can be directly applied for real-time sensitive detection in medical diagnosis as well as in direct in vivo monitoring. Synthetic diamond has been recognized as an extremely attractive material for both (bio-) chemical sensing and as an interface to biological systems. Synthetic diamond have outstanding electrochemical properties, superior chemical inertness and biocompatibility. Recent advances in the synthesis of highly conducting nanocrystalline-diamond thin films and nano wires have lead to an entirely new class of electrochemical biosensors and bio-inorganic interfaces. In addition, it also combines with development of new chemical approaches to covalently attach biomolecules on the diamond surface also contributed to the advancement of diamond-based biosensors. The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulatorsemiconductor) platform for multi-parameter sensing is demonstrated with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration. This has also been extended for the label-free electrical monitoring of adsorption and binding of charged macromolecules. One more recent study demonstrated a novel bio-sensing platform, which is introduced by combination of a) geometrically controlled DNA bonding using vertically aligned diamond nano-wires and b) the superior electrochemical sensing properties of diamond as transducer material. Diamond nanowires can be a new approach towards next generation electrochemical gene sensor platforms. This review highlights the advantages of these carbon materials to promote different electron transfer reactions specially those related to biomolecules. Different strategies have been applied for constructing carbon material-based electrochemical sensors, their analytical performance and future prospects are discussed

    Nanocrystalline diamond film for biosensor applications

    Get PDF
    In this study, we have developed a novel capacitive biosensor based oil interdigitated gold nanodiamond (GID-NCD) electrode for detection of C-reactive protein (CRP) antigen. CRP is one of the plasma proteins known as acute-phase proteins and its levels rise dramatically during inflammatory processes occurring in the body. It has been reported that CRP in serum can be used for risk assessment of cardiovascular diseases. The antibodies immobilization were confirmed by Fourier transform spectroscopy (FTIR) and contact angle measurements. In this capacitive biosensor, nanocrystalline diamond acting as a dielectric layer between the electrodes. The CRP antigen detection was performed by capacitive/dielectric-constant measurements. Our results showed that the response of NCD-based capacitive-based biosensor for CRP antigen was dependent on both concentration (25-800 ng/ml) as well as frequency (50-350 MHz). Furthermore, using optimized conditions, the biosensors developed in this study can be potentially used for detection of elevated level of risk markers protein in suspected subjects for early diagnosis of disease

    Advancements in Treatment for Sensorineural Hearing Loss: Implications for Rehabilitation Professionals

    Get PDF
    Rehabilitation professionals often work with individuals with sensorineural hearing loss. Sometimes the hearing loss is due to ototoxic medications that are prescribed as treatments for other conditions. An understanding of the types of ototoxic medications at the root of the sensorineural hearing loss combined with an understanding of the advancements in treatments will help the rehabilitation professional better serve consumers who fit this description

    A new nanocrystalline diamond-based biosensor for the detection of cardiovascular risk markers

    Get PDF
    In this paper, a new method to probe associative interactions of C-reactive protein (CRP) antigen with CRP antibody immobilized on a gold-interdigitated diamond electrodes was investigated. The CRP antigen detection was performed by capacitive/dielectric-constant measurements. Our results showed that the dynamic detection range using optimized conditions for a given antibody concentration (100 μg/ml) was found to be in the range 25-800 ng/ml of CRP-antigen. Biosensor developed in this study can be potentially used for detection of elevated CRP levels in suspected subjects for early diagnosis

    CXXC5 (CXXC finger protein 5)

    Get PDF
    Review on CXXC5, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    Total Absorption Dual Readout Calorimetry R&D

    Get PDF
    Abstract This calorimetry R&D focuses on establishing a proof of concept for totally active hadron calorimetry. The research program involves evaluating the performance of the different crystal and glass samples in combination with different light collection and readout alternatives to optimize simultaneous collection of Cerenkov and scintillation light components for application of the Dual Readout technique to total absorption calorimetry. We performed initial studies in two short test beam phases in April and November 2010 at Fermilab. Here we present first measurements from these two beam tests

    Hacking the Non-Technical Brain: Maximizing Retention in a Core Introductory IT Course

    Get PDF
    Maximizing student retention of, and ability to apply, technical material in introductory information technology courses is a complex task, especially with respect to the general student population. This population struggles with the application of programming concepts in the time-constrained testing environment. Our study considers the implementation of daily quizzes in a core-curriculum information technology and programming course as a means to improve student concept retention and application. Between the first and second exams, the instructors implemented a series of high-frequency, no-risk quizzes. Of the four sections of the course that each instructor taught, two sections each were provided with the quizzes as the experimental group and two remained with the standard curriculum as the control. The results demonstrate the benefits of frequent, effortful recall on student performance in a core-curriculum information technology and programming course

    Persistency of Turkish export shocks: a quantile autoregression (QAR) approach

    Get PDF
    This study analyzes the persistency of total and disaggregated Turkish exports for different shock magnitudes using the quantile autoregression (QAR) method in line with Koenker and Xiao (J Am Stat Assoc 99:775–787, 2004). The results suggest that the persistence of shocks are not similar across different quantiles of Total Exports and disaggregated export sectors, indicating an asymmetry in the case of negative and positive shocks across different export sectors. The persistency behavior of Total Exports as well as Food and Beverages, Chemicals, Basic Metals, Raw Materials, Motor Vehicles and Radio & TV exports are asymmetric to negative versus positive shocks, which cannot be captured by traditional unit root tests. Thus, sound interpretation of QAR results is necessary for policy makers to identify shock characteristics and thereby pursue appropriate policies for overcoming adverse impacts on the economy. © 2015, Springer Science+Business Media New York

    CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients

    Get PDF
    BACKGROUND: CYP2C8/9 polymorphisms may influence breast cancer-free survival after diagnosis due to their role in the metabolism of tamoxifen, paclitaxel, and other chemotherapy. cytochrome P450 (CYP)2C8/9 metabolise arachidonic acid to epoxyeicosatrienoic acids, which enhance migration and invasion in vitro and promote angiogenesis in vivo. We aimed to investigate the frequency of CYP2C8/9 polymorphisms in relation to breast tumour characteristics and disease-free survival. METHODS: A prospective series of 652 breast cancer patients from southern Sweden was genotyped for CYP2C8*3, CYP2C8*4, CYP2C9*2, and CYP2C9*3. Blood samples and questionnaires were obtained pre- and postoperatively. Clinical information and tumour characteristics were obtained from patients' charts and pathology reports. RESULTS: Frequencies of CYP2C8/9 polymorphisms were similar to healthy European populations. Significantly less node involvement (P=0.002) and fewer PR+ tumours (P=0.012) were associated with CYP2C8*4. Median follow-up was 25 months and 52 breast cancer-related events were reported. In a multivariate model, CYP2C8/9*3/*1*/*2/*1 was the only factor associated with increased risk for early events in 297 tamoxifen-treated, ER-positive patients, adjusted HR 2.54 (95%CI 1.11-5.79). The effect appeared to be driven by CYP2C8*3, adjusted HR 8.56 (95%CI 1.53-51.1). CONCLUSION: Polymorphic variants of CYP2C8/9 may influence breast tumour characteristics and disease-free survival in tamoxifen-treated patients

    Ising model on 3D random lattices: A Monte Carlo study

    Full text link
    We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128,000 approx. 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties of the model in the close vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision estimates obtained in Monte Carlo studies of the Ising model and \phi^4 field theory on three-dimensional regular cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
    • …
    corecore