1,161 research outputs found

    Force platform recordings in the diagnosis of primary orthostatic tremor

    Get PDF
    Primary orthostatic tremor (OT) consists of rhythmical muscle contractions at a frequency of around 16 Hz, causing discomfort and/or unsteadiness while standing. Diagnosis has hitherto relied on recording Electromyography (EMG) from affected muscles. The main aim of this study was to see if the characteristic postural tremor in OT can be identified with force platforms. We also quantified postural sway in OT patients to assess their degree of objective unsteadiness. Finally, we investigated the time relations between bursts of activity in the various affected muscle groups. Subjects stood on a force platform with concurrent multichannel surface EMG recordings from the lower limbs. Seven patients with clinical and EMG diagnosis of OT were examined and the force platform data compared with those of 21 other neurological patients with postural tremor and eight normal controls. All OT patients had high frequency peaks in power spectra of posturography and EMG recordings (12–16 Hz). No such high frequency activity was evident in patients with Parkinson's disease, cerebellar degenerations, essential tremor or in healthy controls. Additionally, OT patients showed increased sway at low frequencies relative to normal controls, suggesting that the unsteadiness reported by OT patients is at least partly due to increased postural sway. Examination of EMG timing showed fixed patterns of muscle activation when maintaining a quiet stance within but not across OT patients. These data show a high correlation between EMG and posturography and confirm that OT may be diagnosed using short epochs of force platform recordings

    Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report

    Get PDF
    Using Electroencephalography (EEG) an event-related change in alpha activity has been observed over primary sensory cortices during the allocation of spatial attention. This is most prominent during top-down, or endogenous, attention, and nearly absent in bottom-up, or exogenous orienting. These changes are highly lateralised, such that an increase in alpha power is seen ipsilateral to the attended region of space and a decrease is seen contralaterally. Whether these changes in alpha oscillatory activity are causally related to attentional resources, or to perceptual processes, or are simply epiphenomenal, is unknown. If alpha oscillations are indicative of a causal mechanism whereby attention is allocated to a region of space, it remains an open question as to whether this is driven by ipsilateral increases or contralateral decreases in alpha power. This preregistered report set out to test these questions. To do so, we used transcranial Alternating Current Stimulation (tACS) to modulate alpha activity in the somatosensory cortex whilst measuring performance on established tactile attention paradigms. All participants completed an endogenous and exogenous tactile attention task in three stimulation conditions; alpha, sham and beta. Sham and beta stimulation operated as controls so that any observed effects could be attributed to alpha stimulation specifically. We replicated previous behavioural findings in all stimulation conditions showing a facilitation of cued trials in the endogenous task, and inhibition of return in the exogenous task. However, these were not affected by stimulation manipulations. Using Bayes-factor analysis we show strong support for the null hypotheses – that the manipulation of Alpha by tACS does not cause changes in tactile spatial attention. This well-powered study, conducted over three separate days, is an important contribution to the current debate regarding the efficiency of brain stimulation

    Motor‐evoked potentials reveal a motor‐cortical readout of evidence accumulation for sensorimotor decisions

    Get PDF
    Many everyday activities require time-pressured sensorimotor decision making. Traditionally, perception, decision, and action processes were considered to occur in series, but this idea has been successfully challenged, particularly by neurophysiological work in animals. However, the generality of parallel processing requires further elucidation. Here, we investigate whether the accumulation of a decision can be observed intrahemispherically within human motor cortex. Participants categorized faces as male or female, with task difficulty manipulated using morphed stimuli. Transcranial magnetic stimulation, applied during the reaction-time interval, produced motor-evoked potentials (MEPs) in two hand muscles that were the major contributors when generating the required pinch/grip movements. Smoothing MEPs using a Gaussian kernel allowed us to recover a continuous time-varying MEP average, comparable to an EEG component, permitting precise localization of the time at which the motor plan for the responding muscle became dominant. We demonstrate decision-related activity in the motor cortex during this perceptual discrimination task, suggesting ongoing evidence accumulation within the motor system even for two independent actions represented within one hemisphere

    Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock

    Get PDF
    Algae grown on wastewater media are a potential source of low-cost lipids for production of liquid biofuels. This study investigated lipid productivity and nutrient removal by green algae grown during treatment of dairy farm and municipal wastewaters supplemented with CO2. Dairy wastewater was treated outdoors in bench-scale batch cultures. The lipid content of the volatile solids peaked at Day 6, during exponential growth, and declined thereafter. Peak lipid content ranged from 14–29%, depending on wastewater concentration. Maximum lipid productivity also peaked at Day 6 of batch growth, with a volumetric productivity of 17 mg/day/L of reactor and an areal productivity of 2.8 g/m2/day, which would be equivalent to 11,000 L/ha/year (1,200 gal/acre/year) if sustained year round. After 12 days, ammonium and orthophosphate removals were 96 and \u3e99%, respectively. Municipal wastewater was treated in semicontinuous indoor cultures with 2–4 day hydraulic residence times (HRTs). Maximum lipid productivity for the municipal wastewater was 24 mg/day/L, observed in the 3-day HRT cultures. Over 99% removal of ammonium and orthophosphate was achieved. The results from both types of wastewater suggest that CO2-supplemented algae cultures can simultaneously remove dissolved nitrogen and phosphorus to low levels while generating a feedstock potentially useful for liquid biofuels production
    corecore