235 research outputs found
Enstrophy from symmetry
We study symmetry principles associated with the approximately conserved enstrophy current, responsible for the inverse energy cascade in non relativistic 2+1 dimensional turbulence. We do so by identifying the accidental symmetry associated with enstrophy current conservation in a recently realized effective action principle for hydrodynamics. Our analysis deals with both relativistic and non relativistic effective actions and their associated symmetries
Dimensional reduction from entanglement in Minkowski space
Using a quantum field theoretic setting, we present evidence for dimensional
reduction of any sub-volume of Minkowksi space. First, we show that correlation
functions of a class of operators restricted to a sub-volume of D-dimensional
Minkowski space scale as its surface area. A simple example of such area
scaling is provided by the energy fluctuations of a free massless quantum field
in its vacuum state. This is reminiscent of area scaling of entanglement
entropy but applies to quantum expectation values in a pure state, rather than
to statistical averages over a mixed state. We then show, in a specific case,
that fluctuations in the bulk have a lower-dimensional representation in terms
of a boundary theory at high temperature.Comment: 9 pages, changes to presentation, some content corrections, version
published in JHE
Using subthreshold events to characterize the functional architecture of the electrically coupled inferior olive network
The electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings. We show that whereas the fast events represent intrinsic regenerative activity, the slow events reflect the electrical connectivity between neurons ('spikelets'). Recordings from cell pairs revealed the synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an accurate estimation of the number of connected cells and is suggestive of a clustered organization. This study thus provides a new perspective on the functional and structural organization of the olivary nucleus and a novel experimental and theoretical approach to study electrically coupled networks
CD74 (CD74 molecule, major histocompatibility complex, class II invariant chain)
Review on CD74, with data on DNA/RNA, on the protein encoded and where the gene is implicated
Geometric entropy, area, and strong subadditivity
The trace over the degrees of freedom located in a subset of the space
transforms the vacuum state into a density matrix with non zero entropy. This
geometric entropy is believed to be deeply related to the entropy of black
holes. Indeed, previous calculations in the context of quantum field theory,
where the result is actually ultraviolet divergent, have shown that the
geometric entropy is proportional to the area for a very special type of
subsets. In this work we show that the area law follows in general from simple
considerations based on quantum mechanics and relativity. An essential
ingredient of our approach is the strong subadditive property of the quantum
mechanical entropy.Comment: Published versio
Fermion correlators in non-abelian holographic superconductors
We consider fermion correlators in non-abelian holographic superconductors.
The spectral function of the fermions exhibits several interesting features
such as support in displaced Dirac cones and an asymmetric distribution of
normal modes. These features are compared to similar ones observed in angle
resolved photoemission experiments on high T_c superconductors. Along the way
we elucidate some properties of p-wave superconductors in AdS_4 and discuss the
construction of SO(4) superconductors.Comment: 49 pages, 11 figure
Parity-Violating Hydrodynamics in 2+1 Dimensions
We study relativistic hydrodynamics of normal fluids in two spatial
dimensions. When the microscopic theory breaks parity, extra transport
coefficients appear in the hydrodynamic regime, including the Hall viscosity,
and the anomalous Hall conductivity. In this work we classify all the transport
coefficients in first order hydrodynamics. We then use properties of response
functions and the positivity of entropy production to restrict the possible
coefficients in the constitutive relations. All the parity-breaking transport
coefficients are dissipationless, and some of them are related to the
thermodynamic response to an external magnetic field and to vorticity. In
addition, we give a holographic example of a strongly interacting relativistic
fluid where the parity-violating transport coefficients are computable.Comment: 39+1 page
Synchronous Behavior of Two Coupled Electronic Neurons
We report on experimental studies of synchronization phenomena in a pair of
analog electronic neurons (ENs). The ENs were designed to reproduce the
observed membrane voltage oscillations of isolated biological neurons from the
stomatogastric ganglion of the California spiny lobster Panulirus interruptus.
The ENs are simple analog circuits which integrate four dimensional
differential equations representing fast and slow subcellular mechanisms that
produce the characteristic regular/chaotic spiking-bursting behavior of these
cells. In this paper we study their dynamical behavior as we couple them in the
same configurations as we have done for their counterpart biological neurons.
The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each
realized by analog circuitry and suggested by biological examples. We provide
here quantitative evidence that the ENs and the biological neurons behave
similarly when coupled in the same manner. They each display well defined
bifurcations in their mutual synchronization and regularization. We report
briefly on an experiment on coupled biological neurons and four dimensional ENs
which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole
present interesting new examples of regularization and synchronization in
coupled nonlinear oscillators.Comment: 26 pages, 10 figure
Gauge gravity duality for d-wave superconductors: prospects and challenges
We write down an action for a charged, massive spin two field in a fixed
Einstein background. Despite some technical problems, we argue that in an
effective field theory framework and in the context of the AdS/CFT
correspondence, this action can be used to study the properties of a superfluid
phase transition with a d-wave order parameter in a dual strongly interacting
field theory. We investigate the phase diagram and the charge conductivity of
the superfluid phase. We also explain how possible couplings between the spin
two field and bulk fermions affect the fermion spectral function.Comment: 42 pages, 6 figure
Fluid dynamics of R-charged black holes
We construct electrically charged AdS_5 black hole solutions whose charge,
mass and boost-parameters vary slowly with the space-time coordinates. From the
perspective of the dual theory, these are equivalent to hydrodynamic
configurations with varying chemical potential, temperature and velocity
fields. We compute the boundary theory transport coefficients associated with a
derivative expansion of the energy momentum tensor and R-charge current up to
second order. In particular, we find a first order transport coefficient
associated with the axial component of the current.Comment: 31 pages, v2: published version; added some references, discussion of
the charge-current changed, results unchanged, v3: typo in formula (15)
changed, v4: added footnote 3 in order to clarify the relation of our results
to those of arXiv:0809.259
- …