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Abstract The electrical connectivity in the inferior olive (IO) nucleus plays an important role in

generating well-timed spiking activity. Here we combined electrophysiological and computational

approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and

slow subthreshold events were commonly encountered during in vitro recordings. We show that

whereas the fast events represent intrinsic regenerative activity, the slow events reflect the

electrical connectivity between neurons (‘spikelets’). Recordings from cell pairs revealed the

synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an

accurate estimation of the number of connected cells and is suggestive of a clustered organization.

This study thus provides a new perspective on the functional and structural organization of the

olivary nucleus and a novel experimental and theoretical approach to study electrically coupled

networks.

Introduction
In recent years, research has confirmed that electrically coupled neural networks are found in every

major region of the central nervous system (Condorelli et al., 2000; Bennett and Zukin, 2004;

Connors and Long, 2004; Hormuzdi et al., 2004). One common feature of these networks is their

synchronized rhythmic activity (Connors and Long, 2004; Bennett and Zukin, 2004; Connors, 2017;

Coulon and Landisman, 2017), which has been shown to be correlated with higher brain functions

such as states of arousal, awareness, cognition and attention (Ritz and Sejnowski, 1997;

Engel et al., 2001; Buzsáki, 2005; Steriade, 2006; Uhlhaas et al., 2009; Wang, 2010). Recently, it

has been demonstrated that the efficiency of electrical synapses is modulated by electrical and

chemical activity, very much like chemical synapses (O’Brien, 2014; Marder et al., 2017;

Coulon and Landisman, 2017). It thus stands to reason that the functional architecture of these net-

works must undergo continuous modification to meet the system’s demands. This underscores the

urgent need to determine the functional state of a network and associate it with the corresponding

brain states. Since anatomical information is insufficient, this can only be done using physiological

parameters that capture the functional architecture of a network at any given time.

The inferior olive network, which was among the first electrically coupled networks to be studied

in the mammalian brain, provides primary excitatory input to the cerebellar cortex (Eccles et al.,

1966). There is a general consensus that the function of this network is to generate synchronous

activity in olivary neurons, which provide temporal information for either learning processes, motor

execution, sensory predictions or expectations (Llinás and Sasaki, 1989; Lou and Bloedel, 1992;

Welsh et al., 1995; Van Der Giessen et al., 2008; Llinás, 2009; De Zeeuw et al., 2011;

Ohmae and Medina, 2015; Heffley et al., 2018). Temporal information is thought to be generated
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by the subthreshold sinusoidal-like oscillations of the membrane voltage that appear to emerge

from an interplay between the membrane properties and network connectivity (Llinás and Yarom,

1986; Lampl and Yarom, 1997; Manor et al., 1997; Loewenstein et al., 2001; Devor and Yarom,

2002b). Recently, this oscillatory activity was shown to be governed by chemical synaptic inputs that

partially originate in the deep cerebellar nuclei and modulate the efficacy of the coupling by defining

the spatial extent of the electrically coupled network (Lefler et al., 2014; Mathy et al., 2014;

Turecek et al., 2014).

Early work on the morphological organization of the IO indicated that it is organized in clusters of

up to eight neurons, whose dendrites are integrated in glomerulus structures (Sotelo et al., 1974)

and are innervated by both excitatory and inhibitory synaptic inputs (de Zeeuw et al., 1990;

de Zeeuw et al., 1989). This presumed clustered organization has been supported by dye coupling

studies showing that each olivary neuron is anatomically coupled to roughly ten other neurons

(Devor and Yarom, 2002a; Leznik and Llinás, 2005; Placantonakis et al., 2006; Hoge et al., 2011;

Turecek et al., 2014), and by a recent detailed morphological study demonstrating the directionality

of IO neuron dendrites (Vrieler et al., 2019). Physiologically however, the organization of the net-

work has only been addressed in a few voltage-sensitive dye imaging studies which found ensembles

of synchronously active neurons corresponding to a cluster size estimation of hundreds of neurons

(Devor and Yarom, 2002b; Leznik et al., 2002). The documented synchronicity of complex spike

activity in tens to hundreds of cerebellar Purkinje cells during motor tasks and sensory stimulation is

also in favor of such ensemble organization (Bloedel and Ebner, 1984; Welsh et al., 1995;

Mukamel et al., 2009; Ozden et al., 2009; Schultz et al., 2009; De Zeeuw et al., 2011; Byk et al.,

2019; Kostadinov et al., 2019).

In this study, we describe a novel method to estimate the size and connectivity of a network by

analyzing the all-or-none subthreshold unitary events known as ‘spikelet’. Initially, spikelets were con-

sidered as the manifestation of an action potential transmitted via electrical synapses (Llinas et al.,

1974; MacVicar and Dudek, 1981; Valiante et al., 1995; Galarreta and Hestrin, 1999;

Gibson et al., 1999; Mann-Metzer and Yarom, 1999; Hughes et al., 2002; Chorev and Brecht,

2012). However other studies have also referred to spikelets as reflecting either local dendritic

regenerative responses (Spencer and Kandel, 1961; Golding and Spruston, 1998; Smith et al.,

2013); action potentials in the initial segment or at an ectopic site along the axon that fail to invade

the soma (Stasheff et al., 1993; Avoli et al., 1998; Juszczak and Swiergiel, 2009; Sheffield et al.,

2011; Dugladze et al., 2012; Michalikova et al., 2017); electrical coupling between axons

(Schmitz et al., 2001; Traub et al., 2002); or extracellularly recorded activity of nearby neurons

(Vigmond et al., 1997; Scholl et al., 2015). Here we show that the spontaneous unitary events

recorded from olivary neurons can be classified into two groups that differ in their waveform and

properties: fast events having identical waveforms with variable high amplitudes, and slow events

having different waveforms and low amplitudes. We show that the low-amplitude slow events reflect

the occurrence of action potentials in electrically coupled neurons, whereas the high-amplitude fast

events are likely to represent internal regenerative responses. We then used slow events recorded

simultaneously in pairs of neurons to estimate the size of the network (i.e. the number of neurons

that are connected to each neuron) and the network connectivity profile. We found that each olivary

neuron is electrically connected to an average of 19 other neurons and that the network is not ran-

domly connected but rather composed of functional clusters of connected neurons.

Results

Spontaneous unitary events recorded in neurons of the inferior olive
The subthreshold spontaneous activity recorded from IO neurons (Figure 1A) is composed of unitary

unipolar events of varying amplitudes and waveforms. Such events were observed in 74.3% of the

neurons (188 out of 253) with an average rate of 0.7 ± 0.6 Hz (calculated in 70 neurons). The sub-

threshold events could readily be divided into two populations of small and large events (Figure 1A

inset, circles vs. stars), as shown by the amplitude histogram (Figure 1B). In this example neuron,

K-means clustering of the events’ waveforms reveals five distinct groups (Figure 1B,C), which when

normalized (Figure 1D), showed the waveform difference between the two types; one type had high

amplitude and fast kinetics, and the second type had low amplitude and slow kinetics.
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Figure 1. Two types of subthreshold spontaneous events recorded in olivary neurons. (A) Spontaneous subthreshold events recorded from an olivary

neuron. Right panels - higher magnification of the marked rectangles; gray stars - fast and high amplitude events; green circles - slow and small events.

(B) The distribution of the events’ amplitudes in this neuron; colors were assigned according to the K-means analysis of the amplitudes. (C) Averages of

the subthreshold events in each cluster, color coded as in B. (D) The normalized events shown in C. (E–G) Scatter plots for the relationships between

the shape indices of the subthreshold events (color coded as in B). (E) Amplitude and rise time; (F) Amplitude and half width; (G) half width and rise

time. (H–J) Histograms of the shape indices (half width (H); amplitude (I); and rise time (J)) of the subthreshold events in a population of 63 olivary

neurons; green and gray bars correspond to slow and fast events respectively.

The online version of this article includes the following source data for figure 1:

Source data 1. Source data for Figure 1.

Source data 2. Trace for Figure 1A.
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To further analyze the event waveforms, we measured each event’s rise time and duration at half

amplitude. The results obtained from a representative neuron are summarized in Figure 1E–G. One

type (black to gray circles) had a relatively high amplitude (2.4–16.6 mV; average of 7.5 ± 3.1 mV)

and fast kinetics (average rise time of 1.3 ± 0.3 ms and average half duration of 3.4 ± 0.3 ms)

whereas the second type (green circles) had a relatively low amplitude (0.6–1.9 mV; average of

1.17 ± 0.3 mV) and slow kinetics (average rise time of 2.4 ± 0.4 ms and average half duration of

11.8 ± 5 ms). Plotting the duration as a function of the rise time (Figure 1G), which further supports

the two-type scheme, failed to demonstrate a monotonous relationship between the rise-time and

half-width that is expected from different dendritic locations of synapses (Rall’s cable theory;

Rall, 1967). Thus, it seems unlikely that the two types represent signals arising from different loca-

tions along the cell’s morphological structure. The distribution of rise-time and half-width in a popu-

lation of 63 neurons (of which 49 neurons had the two types of events), which is summarized in

Figure 1H–J, confirms that there were indeed two distinct types of events. Whereas the high-ampli-

tude events had a fast rise time (0.8–2.8 ms; average of 1.4 ± 0.4 ms) and short duration (2.5–8.3 ms;

average of 4.2 ± 1.3 ms), the low-amplitude events had a longer rise time (1.3–4.3 ms; average of

2.5 ± 0.6 ms) and a longer duration (3.6–21 ms; average of 12.7 ± 3.9 ms). For the high-amplitude

events, the broad distribution of amplitudes (ranging from 4.5 to 15.3 mV) and the somewhat limited

distribution of rise-times and durations strongly indicates that these groups of fast events were gen-

erated by a similar mechanism. Overall, the frequency of slow events was four times higher

(0.56 ± 0.62 Hz; n = 69 neurons) than that of the fast events (0.14 ± 0.18 Hz; n = 58 neurons).

To further distinguish between these two events, we examined the effect of the membrane volt-

age on the occurrence and waveforms of both types of unitary events. To that end, we used DC cur-

rent injection, which on average set the membrane potential to a range of �33 to �90 mV.

Figure 2A–B shows the aligned superimposed traces of slow events (Figure 2A) and fast events

(Figure 2B) from one neuron. Normalizing the event amplitudes (Figure 2A–B, right panels) shows

that whereas the shape of the slow events was unaffected by the current injection (A), the fast events

showed a slowdown of the late repolarizing phase with hyperpolarization (B). Quantifying the effect

of the injected current (see Materials and methods) on the amplitude and duration at 20% of the

amplitude in 16 neurons revealed no effect on the amplitude of either type of events (Figure 2C,D;

R2 = 0.0057 and 0.0035, respectively). The duration of the slow events was slightly, but not signifi-

cantly, affected (Figure 2E; R2 = 0.44; one-sample t-test p=0.057). In contrast, DC current injection

significantly increased the duration of the fast events (Figure 2F; R2 = 0.712; one-sample t-test

p=0.0005). Comparing the two sets of data revealed a significant difference (Figure 2E vs.

Figure 2F; paired t-test p=0.017). Finally, we measured the effect of the DC current injection on the

rate of occurrence of the subthreshold unitary events (Figure 2G–H). Whereas the frequency of the

slow events remained unaffected (Figure 3G, R2 = 0.012), the frequency of the fast events increased

by a factor of up to 5 (Figure 2H; R2 = 0.836). This difference between the occurrence of slow and

the fast events, which was highly significant (Figure 2G vs. Figure 2H, paired t-test p=0.005), further

supports our presumption that two different mechanisms generate the two types of unitary sub-

threshold events. Since the membrane potential did not change the amplitude of the events, it

implies that neither of them represents chemical synaptic potentials.

However, application of excitatory synaptic blockers (DNQX and APV) completely eliminated the

presence of the fast events (frequency before application was 0.056 ± 0.066 Hz, with zero events

after application in n = 5 cells). Thus, it is likely that the fast events reflect intrinsic regenerative

response that is triggered by excitatory synaptic input (as for the effect on slow events, see below).

Slow events reflect electrical coupling between neurons
Whole-cell recordings from pairs of coupled olivary neurons revealed that the post-junctional

responses to both spontaneous (Figure 3A) and evoked (Figure 3B) action potentials in one neuron

were precisely correlated with depolarizing events in the coupled neuron. Both the spontaneous and

the evoked events resembled the spontaneously recorded slow events depicted in Figure 1. These

events had an amplitude of 1.2 ± 0.12 mV, a rise time of 3.7 ± 0.9 ms and a duration of 14.9 ± 4.0

ms, thus well within the range of spontaneously measured slow events. Paired recordings from 30

neurons showed that the amplitudes of the events varied from 0.12 to 1.40 mV (average of

0.61 ± 0.35 mV) whereas the average rise times and half durations were 2.61 ± 1.09 ms and

14.31 ± 6.72 ms, respectively, in line with the measured distribution of spontaneously occurring slow
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Figure 2 continued on next page
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events (Figure 3—figure supplement 1C, for rise time and duration p=0.58 and p=0.15 respec-

tively, paired t-test).

In order to identify the source of the spontaneously occurring slow events, we characterized and

compared three types of subthreshold events: the spontaneous slow events; the events triggered by

action potentials in pair recording and the chemical synaptic potentials triggered by ChR activation

in Thy1 mice. The responses to minimal light intensity is shown in Figure 3—figure supplement 1B.

The shapes of the evoked synaptic events differed significantly from those of the spontaneous slow

events in the same neurons (p<0.002 for all comparisons (rise time, half duration and amplitudes),

paired t-test, n = 17 cells), as well as from evoked slow events measured in pair recordings (Fig-

ure 3—figure supplement 1C, black circles; p<0.002 for all comparisons, paired t-test). This strongly

suggests that the small and slow spontaneous events represent action potentials occurring in electri-

cally coupled neurons. To further support this possibility, we measured the effect of excitatory syn-

aptic blockers on the occurrence of the slow events. The chemical synaptic blockers drastically

reduced the frequency of the slow events (from 2.27 ± 1.75 Hz to 0.068 ± 0.078 Hz) while amplitude,

rise time and duration at half amplitude were not affected (p=0.8, 0.25 and 0.96 respectively; paired

KS test; Figure 3—figure supplement 1E). In addition, evoked slow events could readily be seen in

pair recordings with DNQX (Figure 3—figure supplement 1D, n = 10 cells). The decrease in the fre-

quency of the slow events could suggest that a subpopulation of slow events represent chemical

synaptic potentials. However, the spontaneous spiking activity of olivary neurons is triggered by the

fast events (Figure 3—figure supplement 2), that are completely eliminated in the presence of

chemical synaptic blockers (see above), causing a drastic reduction in spiking activity and their elec-

trical posts-junctional presentation, the slow events.

We conclude that the slow events represent the post-junctional responses to action potentials in

coupled cells and therefore we refer to them as ‘spikelets’.

The relatively broad range of spikelet parameters (Figure 1) can be attributed to a wide range of

coupling strengths, different locations of the gap junctions along the dendritic structure or different

durations and shapes of the pre-junctional action potential, which is a well-known feature of olivary

action potentials (Llinás and Yarom, 1981a; Llinás and Yarom, 1981b). We first examined the effect

of coupling strength by calculating the ratio of the amplitudes of the pre-junctional action potential

to the post-junctional spikelet and compared it to the coupling coefficient measured by direct cur-

rent injection (see Materials and methods). As shown in Figure 3C, there was a significant positive

correlation (with a slope of 0.134; R2 = 0.614, p<0.0001; Pearson correlation). Next, we examined

the effect of the shape of the pre-junctional action potential on the spikelet parameters. To that

end, we partially blocked the voltage dependent potassium current by adding TEA (10 mM) to the

bath solution. In the presence of TEA, a variety of action potential waveforms were elicited by cur-

rent injection (Figure 3D). In particular, the initial upstroke of the action potential was unaffected,

but there was a significant broadening of the repolarizing phase (Figure 3D, upper panel, blue) that

often elicited a second calcium-dependent action potential (Figure 3D, upper panel, cyan). This vari-

ety of action potential waveforms was always associated with electrical post-junctional responses

that could be clustered into two distinct groups (Figure 3D, lower panel). The prolongation of the

action potential was, as expected, followed by a matching increase in the duration of the post-junc-

tional responses (Figure 3D, lower panel, blue traces). The appearance of the second component

was associated with a slow wave of depolarization in the post-junctional cell (cyan traces). This sug-

gests that the wide range of spikelet parameters (Figure 1) can be accounted for by the variability in

coupling strength and pre-junctional action potential waveforms.

Finally, we examined the occurrence of spikelets in neurons that exhibited subthreshold oscil-

latory activity. Since these oscillations occurred simultaneously in several neurons (Lefler et al.,

2013), it was expected that spikelet occurrence will be correlated with the oscillatory activity. About

Figure 2 continued

represent the average value for all the neurons in each current injection. Note that the decrease in duration (F) and the increase in frequency (H) with

depolarization only occurs for fast events.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for Figure 2.
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Figure 3 continued on next page
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50% of the olivary neurons showed spontaneous subthreshold oscillations (Figure 3E). Careful exam-

ination of the peaks of the oscillations (Figure 3F) revealed that they were crowned with spikelets.

To quantify this observation, we calculated the distribution of the inter-spikelet-interval (ISLI,

Figure 3G, black bars), and found distinct groups appearing at intervals of 200 ms. We then calcu-

lated the autocorrelation function of the subthreshold oscillations (Figure 3G, yellow line) and found

that it matched the ISLI perfectly. It is important to note that a similar fit was observed in 60% of the

oscillating neurons (n = 18) whereas in non-oscillating neurons (n = 70) the ISLI exhibited a Poisson-

like distribution (Figure 3H). The strong correlation between oscillatory behavior and the occurrence

of spikelets further supports the conclusion that these events represent activity in adjacent electri-

cally coupled neurons.

Estimating network connectivity from dual cell recordings of
simultaneously occurring spikelets
Figure 4A depicts the spontaneous activity recorded simultaneously from two neurons. As described

above (Figure 3) action potentials (diagonal bars in Figure 4A) occurred irregularly in either of the

two neurons and were always associated with spikelets in the paired neuron (Figure 4B). The sub-

threshold activity was dominated by spikelets which appeared randomly in the two neurons. How-

ever, occasionally spikelets occurred simultaneously in both cells (marked in Figure 4A and shown at

high resolution in Figure 4C) which we refer to as ‘common spikelets’. Each of the three examples

shown in Figure 4C, which occurred without measurable time difference, have variable amplitudes.

The first and the third spikelets had larger amplitudes in the red neuron (cell 2) whereas the middle

spikelet had a larger amplitude in the black neuron (cell 1). Since action potentials in one neuron

evoke very similar spikelets in the other (Figure 3A–B), the most likely explanation is that each of

these common spikelets represents the action potential in an additional neuron that is coupled to

both of the recorded neurons (see Discussion). On the population level, 18 out of 30 pairs had com-

mon spikelets (60%). Of these pairs, the occurrence of common spikelets varied from 0.02 to 1.1 Hz,

which is 3.5–66% of the total number of measurable spikelets (Figure 4D).

The occurrence of common spikelets can be used to estimate the number of neurons that are

electrically coupled to each neuron in the olivary network. In this example of a paired recording, four

different groups were identified (see Materials and methods, Figure 4E), which indicates that at

least four neurons were electrically coupled to both recorded neurons. Further analysis of these data

provided an estimate of the total number of neurons connected to each of the two recorded neu-

rons. In this example, a total of 16 common spikelets, organized in four groups, were recorded. The

four groups thus represent four neurons that are coupled to the two recorded neurons. Each of

these neurons fired on average four times during the recording period. Therefore, we can assume

that each neuron in the network also fired on average four times during the recording period. In

addition to the common spikelets, nine non-common spikelets were recorded in the black cell and

32 in the red one. These non-common spikelets thus represent spikes in ~2 additional neurons (9/4)

connected to the black neuron and eight neurons (32/4) connected to the red neuron. The result of

this numerical consideration is that the black neuron is connected to the red neuron, to four addi-

tional neurons that are connected to both recorded neurons and to estimated two additional neu-

rons, totaling seven neurons. Similarly, the red neuron is estimated to be connected to 13 neurons.

This analysis was performed on 18 dual recordings and the results, which are summarized in

Figure 3 continued

(lower traces). (E) Subthreshold events recorded in oscillating olivary neuron. (F) Superposition of the gray rectangles in E, at higher magnification. Note

that spikelets were only present for 50 ms along the peak of the oscillations. (G) Inter-spikelet interval (ISLI) from the same neuron (using 4 ms bins), and

an autocorrelation (yellow line) of the membrane potential. (H) The ISLI distribution in a non-oscillating neuron.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3.

Source data 2. Trace for Figure 3A.

Source data 3. Trace for Figure 3B.

Source data 4. Trace for Figure 3E.

Figure supplement 1. The slow events represent electrical coupling between olivary neurons.

Figure supplement 2. The fast evens are the major source of spontaneous action potentials in olivary neurons.
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Figure 4F, indicate that a neuron can connect to as many as 40 other neurons (average of

19.2 ± 10.3). It should be noted that the use of a slice preparation undoubtedly contributed to the

wide range of connected neurons and to some degree of underestimation (see Discussion).

We re-examined the approach to estimate the number of connections per neuron by reconstruct-

ing a realistic olivary network (Figure 5A, see Materials and methods). The firing rate of neurons in

the network was set to 0.058 Hz ±0.04 Hz (as observed experimentally) and the number of common

spikelets in pairs of neurons occurring within 15 min of simulation was measured. Recordings from a

sample pair are shown Figure 5B and C. In this example, four groups of spikelets that appear 26,

16, 65 and 32 times were detected (Figure 5C). By applying the same calculation as performed in

the experimental observations (Figure 4), we concluded that the red neuron was electrically con-

nected to 24 neurons whereas the black neuron was connected to 26 neurons. In this model, the red
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Figure 4. Common groups of spikelets during paired recording reveals the estimated number of neurons that are electrically coupled. (A) Simultaneous

recording from two electrically coupled neurons. Action potentials were truncated (doubled diagonal lines) and an example of the occurrence of

common spikelets is marked (dashed rectangle). (B) Superimposed traces of spontaneous action potentials in either cell 1 (black neuron) or cell 2 (red

neuron) and the corresponding spikelets in the other neuron. (C) Higher magnification of the rectangle marked in A, showing spikelets that occur

simultaneously in both neurons. (D) Histogram of the frequency of spikelets in neurons recorded in pairs, showing all the spikelets (white bars) and all

the common spikelets (gray bars; n = 18 pairs), sorted by increasing frequency of common spikelets. (E) Example of common spikelets from the pair

presented in A-C. The spikelets could be divided into four groups, with N = 2–7 spikelets in each group. (F) Histogram of the estimated number of

neurons that are electrically coupled to each of the pair-recorded neurons (n = 18 pairs).

The online version of this article includes the following source data for figure 4:

Source data 1. Trace for Figure 4.
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and black neurons were actually connected to 17 and 20 neurons, respectively (pink circles in

Figure 5D). We performed the same calculation in 20 randomly selected pairs of neurons and plot-

ted the estimated versus the real number of connections per cell (Figure 5D). The results were dis-

tributed along the diagonal (with the average marked by + sign), demonstrating the validity of this

approach in estimating the number of connections for each neuron. However, the accuracy of the

estimation depends strongly on variability in firing rate and the recording duration. As shown in

Figure 5E the difference between the estimated and real number of connections per neuron

decreases as a function of simulation duration. Moreover, at high variability in firing rate (black

curve), longer recording duration does not improve the error compared to low variability firing rate

(light gray curve). However, the estimation of the mean number of connected cells (+ sign in

Figure 5D) is less sensitive to simulation duration or to variability in firing rate (Figure 5F, see dis-

cussion). We conclude that this approach provides a reliable estimate of the mean number of con-

nected cells.
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Figure 5. Simulations examining the method used for estimating the number of connections per cell. (A) Schematics of the modeled network where the

recorded pairs of neurons (black and red circles) are connected to four common neurons (purple) and to 12 and 15 additional neurons (cyan); 34 other

neurons (gray) that are connected to either the cyan or the purple neurons are also shown. (B) Example action potential and their post junctional

responses from the red and black neurons in A. (C) The four common groups of spikelets recorded in the black and red cells with N = 16–65 spikelets

in each group. (D) Plot of the predicted number of connections per cell, estimated from the common groups of spikelets, against the real number of

connections per cell. The line marks the diagonal, the + sign marks the mean and the pink circles represent the two cells in A. (E) Difference between

the estimated and real number of connections per neurons as a function of simulation duration for six different firing rate variabilities (std; color-coded

as in the legend). (F) The difference in estimating the mean number of connections in the network (+ sign in D) as a function of simulation duration for

six different firing rate variabilities (std). The calculation was done only on neurons that had common neighbors (n = 278 pairs). Mean firing rate was

0.058 Hz.
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Insights into the network architecture from the distribution of groups
of common spikelets
Further insights into the organization of the network can be extracted from the distribution of the

number of groups of common spikelets. Figure 6A depicts three examples of common groups of

spikelets obtained from three different paired recordings, showing the reliability of the grouping

procedure. The number of common groups (Figure 6B) varied from 0 to 7 with a markedly higher

incidence at 2–4 groups. The distribution of the number of groups of common spikelets (Figure 6B)

provides information on the organization of the network. This was examined by constructing artificial

networks, each with different connectivity matrix, and calculating the expected distribution of com-

mon groups in the connectivity matrix. To that end, we first used experimental results showing that

the probability to detect electrically coupled olivary neurons is distance dependent (dark green line

in Figure 6D; Devor and Yarom, 2002a). After fitting these results with a Gaussian curve

(Figure 6D, blue line) we constructed networks in which randomly selected neurons show the proba-

bility of connection as a function of inter-somatic distance fits the experimental distribution

(Figure 6D,G; gray bars). Additionally, we checked the distribution of common neighbors (proxy for

groups of common spikelets in Figure 6B) in the matrix (Figure 6E,H; gray bars) and compared it to

the experimental distribution (Figure 6E, green line).

We examined two possible connectivity patterns that might support this type of distribution (see

Materials and methods; network connectivity matrices). The first is a network where the probability

of a connection between two neurons depends solely on their inter-somatic distance (Figure 6C–E).

The second assumes that the network is organized into clusters of neurons (Figure 6F–H), where the

probability of connection within a cluster is larger than between clusters (both probabilities are dis-

tance-dependent).

As shown in Figure 6C–E, the simple distance-dependent network captured the distance-depen-

dent probability of a connection (Figure 6D, p=0.99, for detailed statistical analysis see

Materials and methods and Figure 6—figure supplement 1), but it failed to reproduce the distribu-

tion of common spikelet groups as found experimentally (Figure 6E, p<0.002, Fisher’s Exact). On

the other hand, when the modeled network was organized in clusters, it replicated both the experi-

mental distribution of common groups (Figure 6H, p=0.13) and the distance-dependent connection

probability (Figure 6G, p=0.96). Note that in all modeled networks, each neuron was connected to

about 11–21 neurons, which lay within the numbers estimated from the experimental observations

(Figure 4F).

To further investigate the robustness of the result that the IO network is organized in clusters of

coupled neurons, we searched for possible experimental or computational artifacts that may affect

this conclusion. First, we examined the possibility that the experimental observation of the distribu-

tion of common groups is inaccurate. To that end, we tested the possibilities that we either failed to

detect common groups or incorrectly identified groups of common spikelets.

Accordingly, we increased the number of pairs that did not show common groups to 18 (6 addi-

tional pairs) and removed one pair from each of the other groups (Figure 7A, green line). Alterna-

tively, we reduced the number of pairs that did not show common groups by half (six pairs) and

distributed them among the other pairs (Figure 7B, green line). As shown in Figure 7A and B, these

variations did not change the main conclusion, namely the non-cluster organization cannot account

for the distribution of the common groups (p<10�6 for Figure 7A and p=0.0025 for Figure 7B; see

Materials and methods).

Furthermore, we also examined other cluster connectivity profiles (see Materials and methods).

Figure 7C and D demonstrate two additional examples of clustered organizations (gray and black

bars) that differ in their maximal connectivity value (S) and the reduction of probability of connection

as a function of distance both for within and between clusters (s, see inset for connectivity profiles).

Both models faithfully reproduced the distance-dependent probability of a connection (Figure 7C;

p=0.7 and p=0.75 for gray and black, respectively) and the distribution of common groups

(Figure 7D, p=0.9 and p=0.67 for gray and black, respectively). On the other hand, under non-clus-

tered organization, changing the maximal connectivity value (S) or the reduction of probability of

connection as a function of distance (s, color coded) did not reproduce the observed distribution of

common groups (Figure 7E–G). We scanned different s, S and show that all networks produce a
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Figure 6. Simulations examining the network connectivity that accounts for the experimental distribution of common groups of spikelets. (A)

Experimental example of common spikelets from three different pairs, that were divided to 1, 4 or 6 common groups (pair 1,2 and 3, respectively). (B)

The distribution of the number of common groups in all experimentally recorded pairs. (C–E) The expected distribution of the common groups in a

model where the probability of connection is distance- dependent. (C) Schematic illustration of a distance-dependent connectivity. The connection

probability is color coded. (D) The probability of connection in the model (gray bars) and in the experiments (blue line) as a function of the inter-

somatic distance. The blue curve represents a Gaussian fit to the data. The green curve represents the experimental results (Devor and Yarom, 2002a;

see actual data in Figure 6—figure supplement 1). (E) Distribution of the common groups in the model (gray bars) and experiment (as in B; green line)

for cells of up to 40 mm apart. (F–H) Same as C-E for a network that is organized in clusters of neurons with a high probability of connection within a

cluster and a low probability between clusters (See Materials and methods). Each cluster consisted of about 40 neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Traces for Figure 6.

Figure supplement 1. Extended data for the statistical analysis in Figure 6.
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Figure 7. Further examination of possible network connectivity reveals the robustness of cluster organization as the best explanation for the
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Compensating for possible over estimation of common groups, by increasing the number of pairs that had zero common groups. (B) Compensating for

possible underestimation of common groups, by reducing the number of pairs that has zero common group. Green lines are the corrected distribution

of common group; bars are the expected distribution assuming distance-dependent connectivity (As in Figure 6C–E). (C–D) Two additional cluster

models that can account for the connectivity probability and common neighbor distribution that were found experimentally (as in Figure 6F–H). The

different connectivity profiles of the models are shown in the inset. (E–G) Color lines show the distance- dependent connection probability (E) and

common neighbor distribution (F) for seven different distance- dependent models with S = 62 and different s (see legend). All models did not fit the

experimental common neighbor distribution (p<0.05). (G) Summary of the fit between the experimental common neighbor distribution and modeled

common neighbor distribution, for different distance dependent models. The x axis represents the S that was used for each network and the y axis

represent the s that was used. All p values were below 0.05 (see color bar). The networks in E and F correspond to the column marked by S = 62.
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distribution of common neighbors that is significantly different than the experimental result

(Figure 7G).

Thus, we show that the IO is not connected with a simple distance-dependent rule; instead it is

more likely that it is organized into clusters of neurons with a higher probability of connection within

clusters and a low connection probability between clusters.

Discussion
In this study, we measured subthreshold unitary activity from neurons of the inferior olive in slice

preparation. The implementation of a variety of experimental approaches linked to computational

simulation led to several important conclusions regarding the organization of the network of electri-

cally coupled neurons in the inferior olive nucleus. We showed that there are two populations of uni-

tary events that differ in their waveform and amplitude. The spikelets represent the occurrence of

action potentials in a coupled neuron, while the fast events are likely to represent intrinsic regenera-

tive responses at remote locations. It should be noted that in the scientific literature the word ‘spike-

let’ refers to all non-synaptic subthreshold unitary events and thus creates a certain lack of

consistency regarding their origin (see Introduction; Michalikova et al., 2019). The uniqueness of

our experimental system lies in its ability to differentiate between two types of non-synaptic unitary

events and thus to characterize them. We then used the spikelets recorded simultaneously from two

neurons to gain insights into the size and organization of the electrically coupled network within the

IO nucleus. Analysis of the experimental results showed that each olivary neuron is connected to ~20

other neurons and theoretical considerations indicated that the neurons are not connected in a sim-

ple distance-dependent manner, rather that the network is organized into clusters of neurons, where

the probability of connection within a cluster is higher than the probability of connection between

clusters.

The electrically coupled network in the olivary nucleus
It is well-established that the olivary nucleus forms an electrically coupled network. It has been sug-

gested that this network operates as a synchronous rhythmic device, capable of generating precise

temporal patterns (Jacobson et al., 2008). Both synchronicity and rhythmicity are generated by the

delicate interplay between electrical coupling and ionic conductances. Thus, a single cell by itself

cannot oscillate, whereas in a network formation the neurons generate subthreshold oscillations

(Manor et al., 1997; Loewenstein et al., 2001; Chorev et al., 2007). In this work, we studied the

relationship between spikelets and subthreshold oscillatory activity and found that in oscillating cells

the occurrence of spikelets coincided with the depolarizing phase of the oscillation whereas in non-

oscillating cells they seemed to be randomly distributed (Figure 3G,H). This result strongly supports

our previous hypothesis that the occurrence of subthreshold oscillations is a network phenomenon.

Therefore, when the recorded cell is oscillating, the entire network is synchronously oscillating, thus

generating action potentials at the peak of the oscillation that appear in the recorded cell as spike-

lets. Theoretically, by calculating the number of spikelets at the peak of the oscillatory activity, one

should be able to calculate the number of coupled neurons in the oscillating network. Although

tempting, this is practically impossible because spikelets, given their small amplitude and noisy envi-

ronment, cannot be classified into groups. Therefore, we used the common spikelets to estimate the

number of coupled neurons.

Recording from two olivary neurons revealed spikelets that occurred simultaneously in both

recorded neurons. Given that the average rate of spikelets is 0.56 ± 0.62 Hz, the probability that

these common spikelets reflect random occurrence is extremely low. Furthermore, the repeated

appearance of common spikelets with the same relationships (amplitude ratio and waveforms) fur-

ther supports the non-random occurrence of these events. Thus, the accurate timing of common spi-

kelets can only be attributed to a common source; that is a single pre-junctional neuron. The

number of neurons that were coupled to the two recorded neurons, which varied from 1 to 7, should

be correlated with the size of the network; more common spikelets are expected in larger intercon-

nected networks.

Our simple method of calculating the size of a coupled network is based on data obtained during

simultaneous recordings from two neurons and on the assumption that the neurons display a similar

rate of spontaneous spiking activity. Our simulations show that the accuracy of this method is mainly
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affected by variability in the firing rate (Figure 5E,F). To minimize the error in estimating the firing

rate of the neurons in the network, we used only the spontaneous rate of the common spikelets, and

not the firing rates in the recorded neurons which are affected by the intracellular recordings. Under

this assumption, we showed that neurons are connected to 3–40 other neurons. This is in line with

other studies reporting 1–38 (Hoge et al., 2011) or 0–33 (Placantonakis et al., 2006) dye-coupled

neurons. This broad variability can be attributed to the use of an in- vitro system, where differences

in the number of cells and the integrity of the circuit are characteristic features. Alternatively, this

large variability might reflect an innate feature of the IO nucleus where electrical coupling is under

continuous modulation (Lefler et al., 2014; Mathy et al., 2014; Turecek et al., 2014).

In addition to calculating the number of connected cells, the distribution of common spikelets

enabled us to study the connectivity profile within the nucleus. Our data showed that each two neu-

rons had 1–7 common groups. However, there were a large number of paired recordings that failed

to show common groups. Using a theoretical approach, we demonstrated that this distribution

should not be expected if we assume that the probability of connection depends solely on the dis-

tance between the neurons. On the other hand, if the nucleus is organized into clusters where the

probability of connection within the cluster is higher than between clusters, the observed distribution

of common groups can be reproduced. Although the size of the clusters, as well as the probability

of connection cannot be defined with the current data, this constitutes the first physiological study

that supports the assumption of clustered organization of the nucleus deduced mainly from morpho-

logical studies.

This approach to analyze electrically coupled networks should not be restricted to the inferior

olive network. Most of the studies on electrical coupling in central neurons used paired recordings,

an essential procedure to demonstrate electrical coupling. In many of these recordings spontaneous

spikelets are readily observed. In the work of Curti et al. (2012) on the Mesencephalic Trigeminal

Nucleus, the occurrence of a spikelet in only one of the neurons is taken as indication for additionally

connected cell. Similarly, the work of Long et al. (2004) on the Thalamic Reticular nucleus demon-

strates spontaneously occurring spikelets of different sizes in both recorded neurons. Thus, to imple-

ment our approach all one needs is paired recordings of spontaneous activity of cells in electrically

coupled network.

In summary, we presented a comprehensive study that implemented a wide range of research

approaches to unravel the functional architecture of the inferior olivary network. We showed that

new insights into the organization of the network can be gained by analyzing spontaneous sub-

threshold events, thus paving the way for a novel experimental and theoretical approach to the

study of electrically coupled networks.

Materials and methods

Animals
All experimental procedures were approved by the Hebrew University’s Animal Care and Use Com-

mittee. Brain stem slices were prepared from the following strains of mice: C57BL/6, B6.Cg-Tg

(Thy1-COP4/EYFP; Jackson Laboratory) and Gad2-tm2(cre)Zjh/J (Jackson Laboratory).

Slice preparation
Mice were anesthetized with an intraperitoneal injection of Pentobarbital (60 mg/Kg), and 300 mm

coronal brainstem slices containing the inferior olive were dissected using a Campden 700smz slicer

(Campden Instruments), in 35˚C physiological solution containing 126 mM NaCl, 3 mM KCl, 1.3 mM

MgSO4, 1.2 mM KH2PO4, 26 mM NaHCO3, 10 mM glucose, and 2.4 mM CaCl2, gassed with 95% O2

and 5% CO2. Slices were left in physiological solution at 35˚C for 0.5–8 hr until transferred to the

recording chamber.

Electrophysiological recordings and ChR stimulation
The recording chamber was perfused with 95% O2 and 5% CO2 physiological solution at 24–28˚C.

Slices were visualized using a 40X water-immersion objective in an Olympus BX61WIF microscope

equipped with infrared differential interference contrast (DIC). In order to record from intact olivary

networks, recordings were targeted to the deepest neurons possible in the slice. For pair recordings,

Lefler et al. eLife 2020;9:e43560. DOI: https://doi.org/10.7554/eLife.43560 15 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.43560


two cells located up to 50 mm apart were selected. Whole-cell recordings were performed using 6–9

MW glass pipettes with intracellular solution containing 4 mM NaCl, 10�3mM CaCl2, 140 mM K-glu-

conate, 10�2 mM EGTA, 4 mM Mg-ATP, and 10 mM HEPES (pH 7.2). Signals were acquired at 10–

20 KHz using a Multiclamp 700B (Molecular Devices) and LabView-based custom-made acquisition

software (National Instruments and ZerLabs). For the ChR experiments in Thy1 mice, a custom-made

digital mirror light stimulator with a LED light source (460 nm; Prizmatics) was used to activate the

ChR at defined locations on the slice. In some experiments either TEA (10 mM), DNQX (20–40 mM)

or DNQX (40–60 mM) and AP-5 (40–100 mM) were added to the recording solution.

Data analysis and statistics
Analysis was performed using MATLAB (R2014b and R2016a, MathWorks) for the experimental data

and Python 2.7 for the simulation data. The 70 neurons that were selected for detailed analysis had

a frequency of subthreshold events exceeding 0.02 Hz. The events were divided into two different

groups according to their amplitude and rise time. The event rise time was calculated as 10–90% of

the amplitude. The fast event groups were clustered using the K-means clustering method, using the

MATLAB ‘evalclusters’ function. The effect of the DC current injection in Figure 2C–H was measured

in 16 neurons for different values of current injection. For each neuron, the average value for each

current injection was calculated (gray dots in Figure 2C–H) and fitted with a linear line (dashed gray

lines). To calculate the average slope (black lines), we averaged the gray dots for each current injec-

tion (black dots) and fitted them with a linear line. Error bars represent STD. A one-sample t-test

was used to compare the distribution of the slopes of the linear fits of each cell (dashed gray lines)

to a distribution with a mean equal to zero. A paired t-test was used to test for differences in the

effect on spikelets and fast events. The frequency values for spikelets and fast events (Figure 2G–H)

were normalized for each cell to the highest value. The normalized fast events frequency (Figure 2H)

was calculated from both fast events and the action potentials that were evoked from the fast

events.

The coupling coefficient (CC, Figure 3C) was calculated as the ratio between the change in the

steady-state voltage of the post-junctional cell and that of the pre-junctional cell in response to 250

ms current injection in the pre-junctional cell. The spike coupling coefficient was measured as the

amplitude of the post-junctional spikelet divided by the amplitude of the pre-junctional action

potential. A Pearson correlation was used to calculate the p-value of the linear regression in

Figure 3C. To detect spikelets in oscillatory traces, the raw trace was subtracted with a low-pass fil-

tered trace. The Inter-spikelet-interval (ISLI) in oscillating neurons (Figure 3E) was only calculated in

neurons that had more than 150 spikelets during the session. The ISLI histogram was computed

using 4 ms time bins, and the autocorrelation in oscillating neurons was calculated using a lag of 1

ms.

Common spikelets were defined as spikelets that were detected in a paired recording in both

cells simultaneously. To that end, we searched for spikelets which peaks occurred in both cells within

a time window of 8 msec. Groups of common spikelets in the two cells were clustered according to

their amplitudes using k-means analysis. These clusters were then grouped according to the ratios

between amplitudes in the two cells and verified manually. To estimate the number of connections

per cell, the total number of spikelets (Tspikelets) was multiplied by the number of groups (Ngroups)

and divided by the number of common spikelets (Cspikelets):

Estimatedconnectionspercell¼
Tspikelets �Ngroups

Cspikelets

If the two recorded cells were coupled (i.e., a spike in one cell gave rise to a spikelet in the other

cell), +one was added to the estimation of connections for these two cells.

Neuron models
In a few experiments (using C57BL/6 mice), Neurobiotin (0.5%; Vector Laboratories) was added to

the pipette solution to label the recorded neurons. Slices were then fixed in 4% paraformaldehyde

overnight, washed in PBS and stained with 1 mg/ml Streptavidin AlexaFluor 488 (Life Technologies).

Using the Neurolucida software (MBF Bioscience), three olivary neurons were reconstructed from

fluorescence image stacks acquired using a Leica TCS SP5 confocal microscope (Leica Microsystems).
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To compensate for tissue shrinkage, the z-axis of the reconstruction was multiplied by a factor of 3.

A compartmental model was generated from the morphological reconstruction using NEURON

(Carnevale and Hines, 2006). The axial resistance (Ra) was set to 100 Wcm, the specific membrane

capacitance (Cm) to 1 mF/cm2 and the specific membrane resistivity (Rm) for the three reconstructed

cells were 4300, 4500, 3800 Wcm2 respectively. These values were chosen to yield an input resis-

tance (Rin) that was within the experimental range (115 ± 43 MW).

Building the IO network connectivity matrices
We constructed a network of IO composed of 1134 neurons randomly distributed within a volume of

250 � 500�200 mm, which resulted in 0.045 neurons per 10 mm3. We then clustered the neurons by

their location using k-means clustering, and varied the number of neurons in a cluster by choosing k

to be 1134 divided by the number of neurons in a cluster. The probability of a connection between

two neurons decays with distance according to a Gaussian profile:

S�e
�

x
2

2�s2

100

where S is the maximal probability for connection (when the distance between the neurons is 0), x is

the distance between neurons and s sets the decay of connection probability with distance (see

Figure 7C inset for examples). Note that the shape profile of neuron connectivity within a cluster

could have a different S and s than the connectivity profile of neurons belonging to different clus-

ters. The common neighbor distribution (Figure 6F,I) was extracted on randomly selected pairs of

neurons within a distance of 40 mm from the connectivity matrix. The network shown in Figure 6G

and H had S and s of 77 and 45 within a cluster and 15 and 20 between clusters, respectively. The

networks shown in Figure 7C and D had S and s within cluster of 68.1, 44.3 (gray model) and 85.6,

38.5 (black model), respectively. And S, s between clusters of 2.4, 4.5 (gray model) and 27.3, 4

(black model), respectively. Number of neurons in a cluster was set to 40 in all cases.

Constructing the IO network model
To simulate a realistic network of IO neurons (Figure 5), we followed the steps described above but

with a few modifications. The network volume was 125 � 250�100 mm, and populated with 180 neu-

rons (0.057 neurons for 10 mm3). These neurons were cloned from the three 3D-reconstructed olivary

neurons. S and s within cluster were 77 and 45, respectively; and S, s between clusters were 15 and

20, respectively (as in Figure 6G,H). The electrical connection between two neurons was mediated

by two gap junctions (GJs). A GJ conductance (GJc) of 0.3 nS resulted in a coupling coefficient of

0.03 ± 0.019 as in the experimental range (0.039 ± 0.029). After adding GJc to the modeled cell, Rm

was modified to maintain the experimental value of Rin (see details in Amsalem et al., 2016). The

spikes in the networks were created by current injection to the soma (simulated spikes) following a

Poisson process. We ran the network for 15 seconds with dt of 0.025 ms, we automatically detected

the spikelets and clustered them as done experimently, but using bd-scan instead of k-means.

Figure 5E, F represent the best-case scenario, assuming all spikelets were detected and clustered

correctly.

Statistical comparison between the model prediction and the
experimental observation
The experimental observations were compared with the models’ predictions on two levels. One is

the probability to get the distribution of common group and the second is the probability of connec-

tion as a function of distance. To compare the distribution of common groups (Figures 6–7), we

used the Monte Carlo Fisher’s Exact method (Noutahi, 2018) with 100,000 replicates (see example

in Figure 6—figure supplement 1C).

To compare the distribution of probability for connection as a function of distance, for each net-

work configuration we tested the connectivity of pairs sampled from the model and used two statis-

tical methods to compare the experimental sample to the sample from the model. In the first

method we constructed a contingency table from the model and the experimental data, and for

each distance calculate the p-value using Fisher’s Exact (2 � 2, using Python SciPy), we then merged

those 10 p-values with Fisher’s combined probability test.
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In a second method, for every distance we normalized the expected data and multiplied by the

number of sampled in the experimental data for this distance, providing a vector of expected obser-

vation (see example in Figure 6—figure supplement 1A,B). We used Chi-square (using Python

SciPy) to compare between these expected values to the observed values. (In order to get five sam-

ples per cell, we merged cells 60–70, 70–80, 80–90 and 90–100 in the connected column, and cells

80–90 with 90–100 in the non- connected column). Both statistical methods resulted with compara-

ble p- values. The p- values presented in the main text are for the Fisher’s Exact method.
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