177 research outputs found

    Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features

    Full text link
    TThe goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on fine-grained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly

    Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    No full text
    International audienceThis Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature valu

    Investigating the Effectiveness of Road-related Mitigation Measures under Semi-controlled Conditions: A Case Study on Asian Amphibians

    Get PDF
    Road traffic is the main factor causing the decline in amphibian populations worldwide. The proper design of an amphibian tunnel is one of the most efficient measures to mitigate the negative impacts of road traffic on amphibians. However, no study has investigated the effectiveness of amphibian tunnels under semi-controlled conditions in Asian amphibians. Here, we selected two representative amphibian species, the Chinese brown frog, Rana chensinensis, and the Asiatic toad, Bufo gargarizans, which suffer the most severe road mortality along the roads in Northeast China. We placed experimental arrays of culverts of various sizes (diameters of 1.5, 1, and 0.5 m for circular culverts; side lengths of 1.5, 1, and 0.5 m for box culverts), and substrate type (soil, concrete, and metal) to examine the preferences of both species during the migratory season between May and September in 2016 and 2017. The results revealed that the Chinese brown frog preferred mid- and large-sized culverts as well as soil culverts. We concluded that culverts with a side length ≥ 1 m, lined with soil, and accompanied by a ≥ 0.4 m high guide drift fence and ≤ 45° gradient on the roadside ditch wall would best facilitate road crossings for both species and likely for other amphibian species in Northeast China

    Clinical characteristics and management of immune checkpoint inhibitor-related cardiotoxicity: A single-center experience

    Get PDF
    BackgroundImmune checkpoint inhibitors (ICIs) have revolutionized cancer therapy in the past decade and amplify T-cell-mediated immune responses by disrupting immunoinhibitory signals. The augmented T-cell immune response has led to a range of immune-related adverse effects (irAEs). Immune-related cardiotoxicity has been reported in case series but has been underappreciated due to difficulties in diagnosis. This article describes epidemiological, clinical presentation, subtype, and treatment data and a new systematic framework for the clinical management of cardiotoxicity.MethodsData were extracted for cancer patients who received ICIs in a single center between January 1, 2020, and February 28, 2022. ICI-associated cardiotoxicity was clinically diagnosed based on clinical presentations, biochemical biomarkers, and imaging features.ResultsWe identified a total of 12 (2.46%) cases of ICI-related cardiotoxicity from 487 patients who received PD-1 or PD-L1 inhibitors. All patients were diagnosed with advanced or metastatic solid tumors. The severity of ICI-related cardiotoxicity ranged from subclinical cardiac abnormalities (subclinical type) with only asymptomatic troponin-I (TnI) elevations (25.0%) to symptomatic cardiac abnormalities (clinical type) (75.0%). Patients with symptomatic cardiac abnormalities had several manifestations, including tachyarrhythmia (16.7%), bradyarrhythmia (41.7%), or cardiac failure (8.3%). The median immunotherapy exposure time was 1.5 doses (range: 1 to 5), and the median time from the initial immunotherapy to the onset of ICI-related cardiotoxicity was 33.5 days (IQR: 20.3 to 46.8). Most patients, including those with subclinical cardiac abnormalities, were administered systemic corticosteroids (58.3%). One (8.3%) patient was put on mechanical ventilation, one (8.3%) received plasma exchange therapy, one (8.3%) was implanted with a pacemaker, and one (8.3%) was admitted to the ICU. Three patients with symptomatic cardiac abnormalities (25.0%) died, and other patients presented with significant clinical improvement with good outcomes.ConclusionICI-related cardiotoxicity is uncommon but critical with a high mortality rate and poor prognosis, especially for a small group of patients with symptomatic cardiac abnormalities. More attention should be given to cardiotoxicity associated with ICIs, and these patients should be given baseline examinations and biochemical analyses before and after the initiation of immunotherapy, intensive cardiac assessments, an accurate and rapid diagnosis, and timely multidisciplinary management with immunosuppressive agents and other necessary clinical interventions

    Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application

    Get PDF
    Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer

    Immunogenicity and safety of an inactivated enterovirus 71 vaccine coadministered with trivalent split-virion inactivated influenza vaccine: A phase 4, multicenter, randomized, controlled trial in China

    Get PDF
    BackgroundFew data exist on the immunogenicity and safety of an inactivated enterovirus 71 vaccine (EV71 vaccine) coadministered with trivalent split-virion inactivated influenza vaccine (IIV3) in infants.MethodsThis trial was a phase 4, randomized, controlled trial. Infants aged 6-11 months were eligible, with no history of hand, foot and mouth disease (HFMD) and no history of EV71 vaccine or any influenza vaccine. Eligible infants were randomly assigned to EV71+IIV3 group, EV71 group or IIV3 group. Blood samples were collected on day 0 and 56.ResultsBetween September 2019 and June 2020, 1151 infants met eligibility criteria and 1134 infants were enrolled. 1045 infants were included in the per-protocol population, including 347 in the EV71+IIV3 group, 343 in the EV71 group, and 355 in the IIV3 group. The seroconversion rate (98.56% vs 98.54%; seroconversion rates difference of 0.02% [95% CI: 0.70-0.98]) and GMT (419.05 vs 503.72; GMT ratio of 0.83 [95% CI 0.70 - 0.98]) of EV71 neutralizing antibodies in the EV71+IIV3 group was not inferior to those in the EV71 group. The non-inferiority results for influenza virus antibodies (A/H1N1, A/H3N2 and B) showed that the seroconversion rates and GMTs of the EV71+IIV3 group were non-inferiority to those of the IIV3 group. Systemic and local adverse event rates were similar between groups. None of serious adverse events (SAEs) were related to vaccination.ConclusionsCoadministration of the EV71 vaccine with IIV3 was safe and did not interfere with immunogenicity. These findings support a viable immunization strategy for infants with the EV71 vaccine coadministered with IIV3 in China. This trial is registered with ClinicalTrials.gov, number NCT04091880

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore