76 research outputs found

    An optimization problem in virtual endoscopy

    Get PDF
    AbstractThis paper studies a graph optimization problem occurring in virtual endoscopy, which concerns finding the central path of a colon model created from helical computed tomography (CT) image data. The central path is an essential aid for navigating through complex anatomy such as colon. Recently, Ge et al. (1998) devised an efficient method for finding the central path of a colon. The method first generates colon data from a helical CT data volume by image segmentation. It then generates a 3D skeleton of the colon. In the ideal situation, namely, if the skeleton does not contain branches, the skeleton will be the desired central path. However, almost always the skeleton contains extra branches caused by holes in the colon model, which are artifacts produced during image segmentation. To remove false branches, Ge et al. (1998) formulated a graph optimization problem for obtaining the central path. This paper presents a refined formulation and justifies that the solution of the refined optimization problem represents the accurate central path of a colon. We then provide a fast algorithm for solving the problem

    Does China’s emission trading scheme affect corporate financial performance:Evidence from a quasi-natural experiment

    Get PDF
    Taking China’s emissions trading system (ETS) pilots as a quasi-natural experiment, we examine how the ETS affects firms’ financial performance. Previous studies highlight the impact of ETS on regional and industrial development; however, few studies focus on its potential impact on firms’ performance. Using a time-varying difference-in-differences model and data on Chinese listed firms from 2008 to 2020, we find that the ETS pilots have significant positive impacts on firms’ profitability and value and a negative impact on operating costs. We also find that the ETS pilots improve total factor productivity, but the technological changes indirectly suppress the relation between the ETS and financial performance. Finally, we find evidence that state-owned enterprises experience more significant improvements in their financial performance, led by ETS participation. Our findings have policy implications for firms’ sustainable development and the transition to a low-carbon economy

    ABI4 Mediates Antagonistic Effects of Abscisic Acid and Gibberellins at Transcript and Protein Levels

    Get PDF
    Abscisic acid (ABA) and gibberellins (GA) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA- INSENSITIVE 4 (ABI4) is a central factor for GA/ABA homeostasis and antagonism in post-germination stages. ABI4 over-expression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 over-expression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio compared to the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein, whereas GA promotes its degradation. Taken together, these results propose that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels

    Necroptosis-Inducing Rhenium(V) Oxo Complexes

    Get PDF
    Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Clâ‚‚], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.National Cancer Institute (U.S.) (CA034992

    Insights into salt tolerance from the genome of Thellungiella salsuginea

    Get PDF
    Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments

    Superior Creep Resistance and Remnant Strength of Novel Tempered Ferritic-Martensitic Steels Designed by Element Addition

    No full text
    The in situ combustion (ISC) technique is promisingly applied in heavy oil recovery, whereas the operation inevitably causes high temperature and high pressure for a long duration in the thermal recovery well. As a critical component, oil casing, traditionally made of plain carbon steel in China, generally suffers from poor creep resistance and degraded remnant strength under such a harsh environment, which leads to frequent casing damage and inferior recovery efficiency. In this study, a strategy was adopted to tackle the issue by adding chromium (Cr) element into the plain carbon steel. We designed two types of novel steel with the respective addition of 1 wt.% and 13 wt.% Cr element into plain carbon steel for oil casing. Surprisingly, the trace addition of Cr element with 1 wt.% effectively lowered the creep rate in a creep test at 600 °C and 400 MPa and maintained high remnant tensile strength after creep. More significantly, prior creep history dramatically enhanced remnant strength when Cr element was added up to 13 wt.%. After a long-term creep time of 96 h, the samples were conferred by a stress increment of ~92.5 MPa (~11.0%) relative to the creep-free counterparts, whereas the value was reduced by ~158.4 MPa (~17.8%) for plain carbon steel under the same deformation conditions. Such superior mechanical performances in the Cr-doped steels are mainly ascribed to precipitation retardation of carbides and sluggish precipitate coarsening, which continuously favors a precipitation–strengthening effect in steel. These findings provide a fundamental understanding of precipitation response and creep behaviors and, more importantly, enable the development of high-performance steels used in the field of unconventional petroleum and gas resources
    • …
    corecore