
ELSEVIER Theoretical Computer Science 207 (1998) 203-2 16

Theoretical
Computer Science

An optimization problem in virtual endoscopy

Jie Wanga+-‘, Yaorong Geb,2

a Department of Mathematical Sciences, University of North Carolina at Greensboro, Greensboro,
NC 27412, USA

b Department of‘ Mathematics and Computer Science, and Department of Medical Engineering of the
Division of Radiological Sciences, Bowman Gray School of Medicine, Wake Forest University,

Box 7388, Winston-Salem, NC 27109, USA

Abstract

This paper studies a graph optimization problem occurring in virtual endoscopy, which con-
cerns finding the central path of a colon model created from helical computed tomography (CT)
image data. The central path is an essential aid for navigating through complex anatomy such
as colon. Recently, Ge et al. (1998) devised an efficient method for finding the central path
of a colon. The method first generates colon data from a helical CT data volume by image
segmentation. It then generates a 3D skeleton of the colon. In the ideal situation, namely, if

the skeleton does not contain branches, the skeleton will be the desired central path. However,
almost always the skeleton contains extra branches caused by holes in the colon model, which

are artifacts produced during image segmentation. To remove false branches, Ge et al. (1998)
formulated a graph optimization problem for obtaining the central path. This paper presents a
refined formulation and justifies that the solution of the refined optimization problem represents
the accurate central path of a colon. We then provide a fast algorithm for solving the problem.

@ 1998-Elsevier Science B.V. All rights reserved

1. Introduction

Virtual endoscopy is a new medical technology that allows physicians to exam-

ine computer simulations of patients’ anatomy rendered from CT scans. It combines

medicine, clinical experience, radiology, image processing, computer algorithms, and

applied mathematics to provide the public with alternative medical procedures that are

less painful, less costly, and less risky compared to conventional endoscopic proce-

dures. For instance, medical research has shown that small colon polyps, the precursor

to colon cancer, can be detected with virtual endoscopy [9, Ill.

* Corresponding author. E-mail: wang@uncg.edu.

’ This work was supported in part by NSF under grant CCR-9424164.

2 Supported in part by NSF under grant BES-9520388 and by ARPA under grant F41624-96-2-001.

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved

PZZ SO304-3975(98)00065-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81104754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

204 J. Wang, Y Gel Theoretical Computer Sciencc~ 207 (1998) 203-216

When applying virtual endoscopy to complex anatomy such as colon, users often

find it difficult to keep track of their position and orientation inside the complex colon

image. As a consequence, a part of colon lumen may be left without inspection. Hence,

one would like to have a tour guide for traveling through a virtual colon. Finding the

central path through the lumen of a colon provides a natural solution. The central path

can be used, for example, to create a movie that displays the internal views of the colon

lumen generated automatically along the path; and to guide the user to walk through,

by using a computer mouse, the colon lumen without getting lost in the virtual space.

In addition to aiding navigation, the central path also provides a vital component for

more advanced processing and visualization of the virtual anatomy. For example, one

can slice the virtual colon into segments of similar length and split each segment into

two halves based on a curvilinear cutting plane that passes through the central path,

which provides a clear visualization with a single view [lo].

Several methods have been proposed to determine the central path of a virtual

anatomy. One approach requires that users manually select a number of points along

the pathway for constructing a central path [4,8, 111. Using this method, users often

need to spend considerable amount of time to explore and understand the data volume

prior to placing the points, which makes the method less desirable for routine clinical

applications. Another approach offers automatic methods [5,7], but these methods can

only find a central path (or a path closed to the center) in the colon lumen for limited

cases. These methods fail when the colons have complex shapes. In some cases, a part

of the small bowel may also be included in the colon data, which makes the case even

more difficult to analyze. To overcome these obstacles, Ge et al. [3] recently devised

an efficient method based on the concepts of skeletons. A skeleton of a 3D object is

the locus of the centers of the largest balls that can fit inside the object; such balls are

referred to as maximally inscribed balls [11.

Ge et al.‘s method consists of four steps. First, it generates a 3D image data volume

of a colon from helical CT scans by image segmentation. Second, it generates a 3D

skeleton of the colon image by using an improved thinning algorithm based on Li

et al.‘s thinning algorithm [6]. The thinning process preserves the topological con-

straints and the geometric constraints of the original object. (The geometric constraints

are the two endpoints of the colon provided by the user.) This means that if the skele-

ton does not contain branches, then it is the desired central path. However, almost

always the skeleton contains extra branches caused by holes in the object that are arti-

facts produced during image segmentation. The number of holes may be reduced by a

finer segmentation; but no segmentation, however fine, seems likely to eliminate holes

completely. Hence, false branches need to be removed, which is the task of the third

step of the method. Note that the image segmentation process may also produce cavi-

ties, which corresponds to an isolated point on the skeleton, and hence can be removed

easily. After the false branches have been pruned, the remaining skeleton provides the

accurate central path. However, the path contains many abrupt direction changes due

to the discrete nature of image data. The last step of the method computes a smooth

representation of the central path by approximating the final skeleton with B-splines.

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 205

To remove the false branches of the skeleton in Step 3, the skeleton is first converted

to a connected graph with positive weights, referred to as a skeletal graph. Here by

connected graph we mean that the graph does not contain isolated vertices. In the

skeletal graph, a vertex corresponds to a point on the skeleton where either three or

more branches join, or only one branch joins (in this case, the point is an endpoint of

the colon), and an edge corresponds to a branch. The weight of each edge is determined

as follows. Note that each point on a skeleton branch is associated with a maximally

inscribed ball. It has been observed that holes are almost always near the surface [3],

and so the extra branches that are induced by these holes usually pass through narrow

segments. In other words, the desired central path lies in the center of the colon lumen

with a relatively large diameter. Imagine that each point on the skeleton corresponds

to a pipe whose size is the maximally inscribed ball. A skeletal branch can then be

viewed as a connected sequence of pipes in which balls can roll back and forth. The

smallest pipe along the branch determines the largest ball that can pass through this

branch. Thus, the radius of the smallest ball along a skeleton branch is used as the

weight of its corresponding edge in the graph. In case there are multiple edges between

two vertices (this occurs when a skeletal branch splits into two to go around a hole),

the edges with smaller weights are removed.

The skeletal graph of a colon has two endpoints. We want to find a path from one

endpoint to the other endpoint in the skeletal graph such that its minimum weight

is the maximum among all paths, and it avoids passing through any narrow passage

whenever it is possible. Such a path corresponds to the true central path of the colon.

Ge et al. [3] formulated this optimization problem as a problem of finding a path with

the maximum Jflow, where the flow of a path is defined as the minimum weight of all

edges on the path. However, in some cases, there may be more than one path with

the maximum flow. In such a case, a heuristic was used in [3] for finding a central

path among all paths with the maximum flow. We refine this formulation in this paper

and fully justify that the solution of the refined optimization problem represents the

accurate central path. These results are given in Section 2. In Section 3, we present a

O(n log n)-time algorithm for solving the optimization problem on skeletal graphs, as

well as mathematical analysis of the algorithm, where n is the number of vertices in a

graph. We then present a running example of the algorithm on a complex colon case

in Section 4.

2. Finding the central path

We consider connected graphs with positive weights. Since an undirected graph can

be simulated by a directed graph, where each edge is represented by two arcs traveling

in opposite directions, we assume that all graphs are directed. Denote by w(U, v) the

weight of an edge from u to v.

Let G be a skeletal graph (i.e., the weighted graph converted from a skeleton as

described in the second last paragraph in Section 1). Let s and t be the two endpoints

206 J. Wang. Y. GelTheoretical Computer Science 207 (1998) 203-216

in G. In what follows, we will fix the usage of s and t to denote the two endpoints of

the colon image. To search for the central path from s to t, we should avoid selecting

branches with small weights whenever it is possible. There are two subtle issues in

formulating a mathematical definition to capture the essential features of the central

path, and we discuss them below.

Issue 1: False branches of large weights. In searching for the central path from s

to t, one may want to use the following greedy strategy; namely, at a current vertex U,

select the next vertex u with the largest w(u, 0). This strategy works fine if all false

branches from vertex u have strictly smaller weights than the weight of the true branch

from u (here by a true branch it means the branch on the central path). But this strategy

fails if a false branch actually has a larger weight than that of the true branch on a

particular segment, which may occur due to limitations of segmentation. Although such

cases do not always occur, we have encountered such cases during our experiments.

Hence, if this greedy strategy is used, then a false branch will be selected, which will

then lead us to other false branches.

One may then perhaps suggest that, if such a case happens, one should try to run a

finer segmentation and start the whole process over again. However, the segmentation

process and the thinning algorithm are extremely time consuming because a large data

volume is involved: Each helical CT volume may contain up to 200 MB of data. Hence,

this approach is not desirable. Compared to the large data volume of the original image,

the size of the skeletal graph is substantially smaller; naturally we should avoid re-

running the whole process. Note that selecting a false branch with a large weight may

lead to another false branch, which may lead to a false path with a smaller flow than

the maximum flow. Hence, we want to find a path with the maximum flow. We note

that there may be two or more such paths. If x is a common vertex occurred on such

paths, the one that has the largest weight from s to x should be selected.

Let p=(u~,u~,..., Q) be a simple path. Denote by f(p) the flow of p; namely,

f(p)= min{w(u;_l,t4): 1 didk}.

We use Vi J+ Uj Cj> i) to denote the portion of p from Ui to uj, i.e., the path (Vi,. . . , uj).

Definition 2.1. Let G be a weighted graph. Let u and u be two vertices. A simple

path p from u to u in G is a largest path if for any other path p’ from u to u, the

following two conditions hold.

(1) f(P’)df(P).
(2) If x is a vertex shared by both p and p’, then f(u Lx> <f(u 2~).

Issue 2: True branches of juctuating weights. If there is only one largest path from

s to t, then that path represents the accurate central path. However, in some cases, there

are two or more largest paths. For example, imagine that a colon image contains some

segments that are narrower than the other segments. Then the narrowest segment may

determine the flow of the central path. If after this narrowest segment the colon image

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 207

(obtained from image segmentation) becomes substantially larger, then a false path may

also have the same flow as the flow of the central path, because the maximum flow of

all paths is already small. Several heuristics may be used to help identify the accurate

central path among the largest paths. For example, one may suggest to find a largest

path p from ,F to t such that for any other largest path p’ from s to t, f(pi) <f(pi)

for all i, where pi (respectively, pi) represents the portion on p from the ith vertex

to t. This heuristic works for some cases, but it may fail if the colon image has a

narrow segment that is followed by a wide segment, and then followed by a narrow

segment.

Let ei and e2 be two edges on a path. Denote by ei <Ed if ei is reached first before

e2 is reached. If ei, e2, and e3 are three edges on a path with ei <e2 <es such that

w(ei) < w(e2), and w(e2) > w(es), then we say that the path has Jluctuating weights.

The following is a possible heuristic to handle fluctuating weights; namely, find a

largest path p from s to t such that for any largest path p’ from s to t, if there is an

edge el on p and an edge ei on p’ with w(e’,) > w(ei), then p must contain an edge

e2 > ei such that for some edge ek >,el, on p’, w(e2) > w(ek). This heuristic works for

some cases, but it may fail in some other cases. For example, assume that ei and e2

are the two edges at the end on the true central path, and e is an edge at the end of a

false path such that w(e) > w(ei) and w(e) > w(e2), then the true central path will not

be selected following this strategy.

To overcome these obstacles, let us imagine that the skeleton of a colon represents

the density of the colon. In the ideal situation, namely, if at any point, all false branches

have smaller weights than the true branch, then the central path has the heaviest average

weight. An average weight of a path is the total weight of all edges divided by the

number of edges on the path. Note that we cannot use the maximum total weight as a

criterion because a false branch may be long and hence its total weight may be large.

In a skeletal graph, almost all false branches have small weights. So even if on some

segments of a colon, a false branch has a larger weight than that of the true branch,

the central path must still have the heaviest average weight.

Let p = (vg, ~1,. . . , uk) be a simple path. Denote by W(p) the average weight of p;
namely,

k-’ 4% vi+1)
W(p)== c k .

i=O

Definition 2.2. Let G be a weighted graph. Let u and u be two vertices. A simple path

from u to v in G is a heaviest path if for any other path p’ from u to v, W(p’) < W(p).

In some cases a path with the heaviest weight may imply that it is also a largest

path. But it is not always true because a heaviest path may contain an edge with very

small weight. Hence, we want to find a path that is the heaviest among the largest

paths. This gives rise to the following definition.

208 J. Wang, Y. GelTheoreticul Computer Science 207 (1998) 203-216

Definition 2.3. Let G be a weighted graph. Let u and u be two vertices. A simple

path p from u to v in G is a critical path if p is a largest path from u to v, and for

any largest path p’ from u to v, W(p’) < W(p).

It is easy to see that if there is a path from u to v, then there must be a critical path

from u to u. The following algorithm finds a critical path. First, the algorithm finds

all paths with the maximum flow. Second, it finds all largest paths from these paths.

Third, it finds a heaviest path from all largest paths. This proves the following lemma.

Lemma 1. For any weighted graph G and any two vertices u and v, if there is a

path from u to II, then there must be a critical path from u and v.

Recall that for any vertex u in a skeletal graph G, almost always false branches

from u have strictly smaller weights than the true branch from U. This implies that

if a path is the heaviest among the largest paths, then it represents the accurate cen-

tral path. Any reasonable segmentation guarantees that such a path is unique. (But we

note that in a general weighted graph, there may be more than one critical path.) In

practical terms, the central path can be found by solving the following optimization

problem.

CENTRAL PATH PROBLEM

Input: A weighted graph G and two vertices s and t.

Output: A critical path from s to t.

We present a fast algorithm for solving this problem in the next section.

3. A fast algorithm

Let G= (V,E) be a connected graph with positive weights. Let s and t be two

vertices. We want to find a critical path from s to t. Let

A(u,v)=
max{f(p):u+% U} if there is a path from u to v,

-1 otherwise,

T(u, v) =

max{ W(p) : u -% u and f(p) = A(s, u)} if there is a path from u to v,

0 otherwise.

Lemma 2. Let G be a weighted graph. Let u and v be two vertices. Then a path p

from u to v is a critical path if and only iffor every vertex x on p, f (u 2 x) = A(u,x)

and W(u 2x) = T(u,x).

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 209

Proof. Let p be a critical path. If there is a vertex x on p such that f(u 2 x) # d(u,x)

(i.e., f(u -!% x)<d(u,x)), then it means that there is another path q from u to x with

f(u .?+ x) = A(u,x). Let p’ be the path u +% x -!+ V. Then we have f(p’) > f(p) and

f(u 5 x) < f’(u 2 x), which violates the condition that p is a largest path from u to v.

If there is a vertex x on p such that W(u -5 x) # r(u,x) (i.e., W(u -% x) < T(u,x)),

then it means that there is another path q from u to x with f(u -fl, x) = T(u,x), and

f(q)= d(u,x). Let p’ be the path u A x ^e, v. Then we have f(p’) >,f(p) and

W(u 2 x)< W(u i x), which violates the condition that p is a heaviest path among

all the largest paths.

The other direction is straightforward. 0

We observe that in a skeletal graph, the number of edges is in the same asymptotic

order of the number of vertices. Hence, we use an adjacency list Adj to represent G

for saving memory space. Note that although G does not contain isolated vertices, it

does not mean that for any pair of vertices u and v, there always exists a path from u

to u. But in a skeletal graph G, there is always a path from s to u for any vertex U.

We present an algorithm that can also be used to handle non-connected graphs. For

each vertex u E V, we maintain four attributes d[u], n[u], Z[u], and a[u] in the algo-

rithm, where d[u] represents the flow from s to U, n[u] returns the predecessor of u on

the current path, Z[u] represents the number of edges from s to u on the current path

through the 7t attributes, and a[u] represents the average weight of the current path

from s to 24.

CRITICALPATH(G, s, t)

1. for each vertex u E V do
d[u] +- -1, rr[~] +- NIL, Z[u] + 0, a[u] + 0

endfor
d[s] +- 0, s +-- 0, Q * v

2. while Q # 0 do
(a) u +- EXTRACTMAX(Q)

if d[u] # - 1 then S +-- S U {u} else goto Step 3

(b) for each vertex v E Adj[u] do
if (d[u] < min{d[u], w(u, 0))) then

d[v] t min{d[u], ~(24,~))

7r[V] + 24, Z[v] +- Z[u] + 1

4vl + (4ul .4ul+ 4% v))l4ul
if (TC[V] # NIL and min{d[u],w(u,u)} ad[u]) then

if ((Z[u] .u[u] + w(u,v))/(Z[u] + l)>u[u]) then
Tc[u] t- u, Z[u] + Z[u] + 1

4vl +- (4ul . dul + WC& u))l~[ul
endfor

endwhile

210 J. Wang, Y. GelTheoretical Computer Science 207 (1998) 203-216

3. if t ES then output the path from s to t using the rc attributes

else there is no path from s to t

Part 1 of CRITICAL_PATH(G, s, t) is for initialization. The procedure EXTRACTMAX in

2(a) finds an element u E Q that has the largest d[u]. For each vertex u in Adj[u], if u

has not been visited, namely, rc[v] = NIL, then the first if-statement of 2(b) updates d[u].

If v has been visited, then the second if-statement of 2(b) checks whether the current

path has a flow at least as large as the flow of the old path. If the answer is yes, the

third if-statement of 2(b) checks whether the current path has a strictly larger average

weight than that of the old path; if the answer is yes, the old path is flipped over to the

current path by changing the 7-t attribute. The formula (l[u] . a[u] + w(u, u))/(l[u] + 1)

calculates the average weight of the current path from s to u via U.

Lemma 3. When the algorithm CNTICAL_PATH(G,S, t) terminates, we have d[u] = A
(s, u) for all vertices u E V - {s}. Moreover, if rc[u] #NIL, the path p from s to u

obtained from the n attributes is a largest path.

Proof. Initially, d[s] = 0, and d[u] = - 1 for all u E V - {s}. Hence, vertex s must

be the first to be chosen by the EXTRACT-MAX operation. For any vertex u E V - {s},
if there is no path from s to U, then u is never inserted in S, and the value of d[u]

remains as -1, which is equal to A(s, u).

We will show that for each vertex u E V - {s}, we have d[u] = A(s, u) at the time

when u is inserted into S and this equality remains true thereafter. We prove it by

contradiction. Let u be the first vertex with d[u] # A(s, u) when it is about to be inserted

in S. Then there must be a path from s to u; for otherwise, d[u] = - 1 = A(s, u), which

would violate our assumption that d[u] # A(s, u). Note that at this moment, u has not

been inserted in S yet, and so u E V -S. Since there is a path from s to U, there must

be a path p from s to u such that for every v on p, we have f (s -% v) = A(s, u).
We write x ---) y to denote an edge from x to y, and write x---f y E p to denote that

x---f y is an edge on p. Let y be the first vertex on p that is not in S. Let x be y’s

predecessor. Then path p can be decomposed into s 2 x---f y -% u, where x may be

equal to s, y may be equal to u, and path p2 may or may not re-enter S.

We claim that d[y] = A(s, y) when u is inserted in S. If x =s, then it is obvious

that d[y] = A(s, y) from the algorithm. Assume that x #s. Since y is the first vertex

on p that is not in S, we have x E S. Since u is the first vertex with d[u] # d(s,u)
when it is inserted in S, this means that d[x] = A(s,x) when x was inserted in S. By

assumption, the path s 2 x + y has flow A(s, y) and pl has flow A(s,x). Hence,

the flow of s 2 x -+ y is equal to min{ A(s,x), w(x, y)}. Since d[x] = A(s,x) and d[y]
is computed when x is inserted in S (see the first if-statement of Step 2(b)), where

d[y] = min{d[n], w(x, y)}, we have d[y] = A(s, y).
We now show that for any vertex u E V - {s}, if there is a path from s to u,

then the value of d[u] will never be changed once d[u] is assigned the value A(s,u).
We note that d[u] never decreases, so it suffices to show that d[u] dA(s, u). This

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 211

inequality is certainly true after the initialization. Suppose this inequality were not true

during some of the steps of the algorithm. Let v be the first vertex with d[v] > d(s, v);

namely, for any z that is visited before u, we have d[z] <d(s,z). We note that by

definition, for any z with z -+ u, d(s, u) > min{ d(s,z), w(z, v)}. By the algorithm, there

must be a vertex z such that d[u] = min{d[zz], w(z,c)}. Since d[z]<A(s,z), we have

d[v] 6 min{ d(s,z), w(z, u)} 6 d(s, v), a contradiction.

Thus, d[u]bd(s,u)= min{w(a,b) : a-+b~s 14 x+y % u}<A(s,y)=d[y]. On

the other hand, since u was chosen before y, we have d[u] >d[y], and so d[u] = d[v] =

d(s, u), which contradicts the assumption that d[u] # d(s, u).

Once u is inserted, d[u] remains unchanged, although its n: attribute may be changed.

But the n attribute is changed to a vertex U’ only when min{d[u’],w(u’,u)} >d[u].

Hence, the final rt attributes provides a path p’ from s to u such that ,f($) = d[u] =

d(.s,u). This completes the proof. 0

Lemma 4. When the algorithm CRITICAL.PATH(G,S, t) terminates, we have a[u] =
T(s, u) for all vertices u E V - {s}. Moreover, if n[u] #NIL, the path p from s to u

obtained from the 71 attributes is a critical path.

Proof. For any vertex u E V - {s}, if there is no path from s to U, then u is never

inserted in S, and the value of a[u] remains as 0, which is equal to T(s,u). If there

is a path from s to u, we will show that a[u] = T(s. u). We prove it by contradiction.

Assume that a[u] # T(s, u). Let p be the simple path from s to u returned from the 71

attributes. Note that when a[u] is updated, l[u] is also updated, which always returns the

length of the path from s to u obtained from the 71 attributes. Let x be the first vertex on

p from s such that a[x] # T(s,x), namely a[x] < T(s.x). This means that there must be

another path q from s to x such that q is a largest path and W(q) > W(s -% x). Let x’ be

the predecessor of x on q. Then x’ is not in p; for otherwise, since x is the first vertex

on p with a[x] < T(s,x), we have a[x’] = r[s,x’], which implies that a[x] = T(s,x), a

contradiction. If a[x’] = T(s,x’), then we have min{d[x’], w(x’,x)} = d[x] and (l[x’]

a[x’] + w(x’,x))/(l[x’] + l)>a[x], which implies that n[x] =x’, a contradiction. So

a[x’] < T(s,x’). We repeat the above argument, and obtain another vertex x”, where x”

is the predecessor of x’, such that a[x”] < T(s,x”) and x” $ {x,x’}. This process can

be repeated and eventually some vertex J) is reached with a[y] < T(s, y), and y has a

unique predecessor s, because there is only a finite number of vertices in G. But then,

a[~] = w(s, y) = T(s, y), a contradiction. Hence, for all u E V - {s}, a[u] = T(s, u). By

Lemma 3, p is a largest path, and so p is a critical path from s to U. This completes

the proof. 0

It follows from Lemma 3 that the algorithm CRITICAL.PATH(G,S, t) returns a critical

path from s to t. Namely, we have proven the following theorem.

Theorem 5. Assume that there is a path from s to t in G, then when the algorithm
CRITICAL_PATH(G,S, t) terminates, the path from s to t obtained $rom the n attributes
is a critical path.

212 J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216

Fig. 1. Rendering of the segmented colon. Touching segments of colon and inclusion of a portion of small
bowel are due to limitations in the segmentation process.

Next, we analyze the time complexity of the algorithm.

Theorem 6. Depending on how the EXTRACTMAX operation is implemented, the algo-

rithm CRITICAL_PATH(G,S, t) runs in time O(n*) or O((n + JEJ)logn), where (VI =n.
Hence, when IEl = O(n), the algorithm can be run in O(n log n) time.

Proof. Suppose we implement the priority queue Q = V - S as a linear array. Then

EXTRACTMAX operation takes time 0(1 VJ - ISI) d 0((VI). There are 1 V(such operations,

and so the total EXTRACT_MAX time is 0(I VI*). Each vertex v E V is inserted in S exactly

once, so each edge in the adjacency matrix list Adj[v] is examined in the for-loop in

Step 2(b) exactly once during the course of algorithm. Since the total number of edges

in all the adjacency lists is /El, there are at most [El iterations of this for-loop, with

each iteration taking 0(1) time. The running time of the entire algorithm is therefore

OPl* + IEI>=W’l*>.
Suppose we implement the priority queue Q with a binary heap. Then each

EXTRACT-MAX operation takes time O(log 1 VI). As before, there are 1 VI such executions.

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 213

Fig. 2. The initial skeleton preserves the original colon topology. The many extra branches that deviate from

the center of the colon are caused by holes in the original object,

The time to build the heap is O(l VI). The assignment d[u] +- min{d[u],w(u,v)} can

be accomplished by increasing the key for u in the heap, which takes time O(log 1 VI).

The other operations each take 0(1) time on a single execution. There are at most

JE(such operations. Hence, the total running time is O((lV] + (E()log IV\). When

\E(=O(IV/), this yields O(]V(loglV() t’ tme, resulting a large saving than the previous

implementation.

Since in a skeletal graph G, (El = 0(1 VI), it follows from Theorems 5 and 6 that

finding the central path of the colon lumen can be carried out in O(n log n) time, where

IVJ =Fl.

Remark. The algorithm CRITICAL-PATH can also be applied to non-connected graphs

with non-negative weights. Also, on a general weighted graph, if we implement the

priority queue Q with a Fibonacci heap, then the algorithm CRITICALPATH can be

run in time O((Vjlog(V(+ IEJ). Th e reference [2] provides details of Fibonacci heap

implementation.

214 J. Wang, Y. GelTheoretical Computer Science 207 (1998) 203-216

Fig. 3. The central path and its smooth B-spline approximation. The dotted line represents the central path

from the original skeleton and the solid line is its B-spline approximation.

Fig. 4. Two internal renderings of the colon lumen as seen from positions along the central path. The central

path is projected into the internal views for illustration.

J. Wang, Y. Gel Theoretical Computer Science 207 (1998) 203-216 215

4. Running examples

We have tested our algorithm on a number of virtual endoscopy colon cases. Each

helical CT volume consists of up to 500 images with 512 x 512 pixels per image. We

present in this section a running example of our algorithm on a complex colon case.

Fig. 1 shows a colon that has been segmented from a CT volume and rendered for

visualization. Notice that the segmentation result is inexact. A large portion of small

bowel has been segmented in addition to the colon. We use this example to demonstrate

the robustness of our algorithms.

The skeleton resulting from the 3D thinning algorithm is shown in Fig. 2, super-

imposed on the original colon rendering. Notice that multiple colon segments touch

each other, and that a portion of the small bowel touches the transverse colon. These

touching segments result in segmentation artifacts known as holes and causes many

extra branches in the skeleton.

Fig. 3 shows the true central path extracted from the initial skeleton (dotted line)

and its B-spline approximation (solid line).

Fig. 4 shows two internal renderings of the colon lumen from two positions on the

central path. Note that these are views of the colon surface from inside. The small

holes that we see in these views are not the holes in the segmented colon object.

Rather, they are artificial tunnels connecting colon segments that create holes visible

from external views. These tunnels are where the extra skeletal branches pass through

in order to go around the holes in the object.

The time required to execute our algorithms varies with the type of platform, the

size of input volume, and the complexity of the colon itself. On an SGI System with

RIO000 (Silicon Graphics, Inc., Mountain View, CA), the time required to convert a

skeleton to a graph and to search for the true central path never exceeded 15 seconds.

Acknowledgements

We thank Dr. David Vining at Wake Forest University School of Medicine for

providing the clinical context of this research and for supplying the data sets to verify

our results. We also thank Xiangjun Wu and Xiangliang Zha for implementing part of

the algorithm presented in this paper.

References

[I] H. Blum, Biological shape and visual science: part 1, .I. Theoret. Biol. 38 (1973) 205-287.

[2] T.H. Cormen, CL. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[3] Y. Ge, D.R. Stelts, X. Zha, J. Wang, D.J. Vining, Computing the central path of colon lumen in Helical

CT images, SPIE International Symposium on Medical Imaging 1998: Image Processing. In press.

[4] A. Hara, C. Johnson, J. Reed, R. Ehman, D. Ilstrup, Colorectal polyp detection with CT colography:

two- versus three-dimensional techniques, Radiology 200 (1996) 49-54.

216 J. Wang, Y. GelTheoretical Computer Science 207 (1998) 203-216

[5] L. Hong, A. Kaufman, Y.-C. Wei, 3D virtual colonoscopy, in: Proc. 1995 IEEE Biomedical Visualization

Symp., pp. 1995, 26-32.

[6] T.-C. Lee, R. Kashyap, C.-N. Chu, Building skeleton models via 3D medial surface/axis thinning

algorithms. CVGIP: Graphical Models and Image Processing 56 (1994) 462-478.

[7] W. Lorensen, F. Jolesz, R. Kikinis, United states patent: virtual internal cavity inspection system, Tech.

Rep. 5611025, 1997.

[8] R. Shahidi, V. Argiro, S. Napel, L. Gray, H. McAdams, G. Rubin, C. Beaulieu, R. Jeffrey, A. Johnson,

Assessment of several virtual endoscopy techniques using computed tomography and perspective volume

rendering, in: Karl Heinz Hohne, Ron Kikinis (Eds.), Lecture Notes in Computer Science: Visualization

in Biomedical Computing, vol. 1131, Springer, Berlin 1996, pp. 521-528.

[9] D. Vining, D. Gelfand, R. Bechtold et al., Technical feasibility of colon imaging with helical CT and

virtual reality, Amer. J. Roentgenology 162 (1994) 104.

[lo] D. Vining, D. Stelts, G. Hunt, D. Aho, Y. Ge, P. Hemler, Technical improvement in virtual colonoscopy,

Radiology 201 (1996) 524.

[l l] D. Vining, R. Shifiin, Virtual reality imaging with helical CT, Amer. J. Roentgenology 162 (1994) 188.

