11 research outputs found
Collaborative MR Workspace with Shared 3D Vision Based on Stereo Video Transmission
P.R.China Mixed reality (MR) research aims to develop technologies that inputting or mixing the rea
Cement soil stabilization for underground liquid natural gas storage
The underground liquid natural gas (LNG) storage system in soil at a shallow depth has benefits in terms of low LNG weathering in tanks due to radiant heat from the sun, less land occupation, and high safety. However, the soil surrounding the underground LNG storage system may experience subzero temperatures and freeze-thaw (F-T) cycles, which may cause damages to adjacent facilities due to freezing expansion and weaken the soil strength. Hence, this study proposed the use of cement stabilization to improve the surrounding soil for the underground LNG system. For this purpose, physical, mechanical, and thermal properties of cement-stabilized soils under subzero temperatures and F-T cycles were investigated. The volumetric expansion of stabilized soils (1.3–1.7%) was significantly lower than that of untreated soils (4.2–10%) at subzero temperatures, which is beneficial for mitigating the potential damages to adjacent facilities due to freezing expansion. A significant deformation was observed in untreated soils after one F-T cycle, while no visible cracks or deformations were observed in stabilized soils with slight strength reduction after 12 F-T cycles, indicating good resistance under F-T cycles. The thermal conductivity of stabilized soils was 19–36% lower than that of untreated soils at both ambient and subzero temperatures, which can decrease the heat transfer rate between the internal and external environment. Overall, cement soil stabilization is beneficial for improving the performance of underground LNG storage system.This study is supported under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from Surbana Jurong Pte Ltd
The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation
The impacts of greenery systems (GSs) on microclimate conditions and building energy performance have been frequently investigated using experiments and simulations during the past decades, especially in summer and winter. However, few studies have focused on the performance of GSs in transition seasons. The ambient weather conditions vary with great fluctuations during transition seasons, which may result in severe oscillations in indoor environments. To investigate the impacts of GSs on indoor environments, an experiment was conducted using a contrastive test platform, which consisted of two experimental rooms, one equipped with a GS and the other without, from 1 April 2019 to 31 May 2019 in Hunan, China. Both rooms were free-running. The experimental results showed that the GS had the ability to reduce the oscillations in the indoor environment. The oscillations in indoor dry-bulb temperature (DBT) and relative humidity (RH) were reduced by 39.3% and 28.8%, respectively. The maximum daily DBT and RH ranges were, respectively, cut down by 3.5 °C and 12.4%. The maximum reductions in external and internal surface temperatures were 29.5 °C and 9.4 °C, respectively, for the GS, while the average reductions were 1.6~4.1 °C and 0.2~1.3 °C, respectively, depending on the orientation of the surfaces. The operative temperature (OT) during the daytime on sunny days was also lowered by the GS. The differences in OT between the two rooms ranged from −1.8 °C to 8.2 °C, with an average of 1.0 °C. The GS can improve the indoor thermal comfort during transition seasons. The thermal dissatisfaction was decreased by 7.9%. This lengthened the thermal comfort time by 15% across the whole day and by 28% during the daytime. This indicates reductions in air-conditioning system operating times, leading to energy savings
The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation
The impacts of greenery systems (GSs) on microclimate conditions and building energy performance have been frequently investigated using experiments and simulations during the past decades, especially in summer and winter. However, few studies have focused on the performance of GSs in transition seasons. The ambient weather conditions vary with great fluctuations during transition seasons, which may result in severe oscillations in indoor environments. To investigate the impacts of GSs on indoor environments, an experiment was conducted using a contrastive test platform, which consisted of two experimental rooms, one equipped with a GS and the other without, from 1 April 2019 to 31 May 2019 in Hunan, China. Both rooms were free-running. The experimental results showed that the GS had the ability to reduce the oscillations in the indoor environment. The oscillations in indoor dry-bulb temperature (DBT) and relative humidity (RH) were reduced by 39.3% and 28.8%, respectively. The maximum daily DBT and RH ranges were, respectively, cut down by 3.5 °C and 12.4%. The maximum reductions in external and internal surface temperatures were 29.5 °C and 9.4 °C, respectively, for the GS, while the average reductions were 1.6~4.1 °C and 0.2~1.3 °C, respectively, depending on the orientation of the surfaces. The operative temperature (OT) during the daytime on sunny days was also lowered by the GS. The differences in OT between the two rooms ranged from −1.8 °C to 8.2 °C, with an average of 1.0 °C. The GS can improve the indoor thermal comfort during transition seasons. The thermal dissatisfaction was decreased by 7.9%. This lengthened the thermal comfort time by 15% across the whole day and by 28% during the daytime. This indicates reductions in air-conditioning system operating times, leading to energy savings