15,434 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Distributed Clustering in Cognitive Radio Ad Hoc Networks Using Soft-Constraint Affinity Propagation

    Get PDF
    Absence of network infrastructure and heterogeneous spectrum availability in cognitive radio ad hoc networks (CRAHNs) necessitate the self-organization of cognitive radio users (CRs) for efficient spectrum coordination. The cluster-based structure is known to be effective in both guaranteeing system performance and reducing communication overhead in variable network environment. In this paper, we propose a distributed clustering algorithm based on soft-constraint affinity propagation message passing model (DCSCAP). Without dependence on predefined common control channel (CCC), DCSCAP relies on the distributed message passing among CRs through their available channels, making the algorithm applicable for large scale networks. Different from original soft-constraint affinity propagation algorithm, the maximal iterations of message passing is controlled to a relatively small number to accommodate to the dynamic environment of CRAHNs. Based on the accumulated evidence for clustering from the message passing process, clusters are formed with the objective of grouping the CRs with similar spectrum availability into smaller number of clusters while guaranteeing at least one CCC in each cluster. Extensive simulation results demonstrate the preference of DCSCAP compared with existing algorithms in both efficiency and robustness of the clusters

    Orbital-transverse density-wave instabilities in iron-based superconductors

    Full text link
    Besides the conventional spin-density-wave (SDW) state, a new kind of orbital-transverse density-wave (OTDW) state is shown to exist generally in multi-orbital systems. We demonstrate that the orbital character of Fermi surface nesting plays an important role in density responses. The relationship between antiferromagnetism and structural phase transition in LaFeAsO (1111) and BaFe2_2As2_2 (122) compounds of iron-based superconductors may be understood in terms of the interplay between the SDW and OTDW with a five-orbital Hamiltonian. We propose that the essential difference between 1111 and 122 compounds is crucially determined by the presence of the two-dimensional dxyd_{xy}-like Fermi surface around (0,0) being only in 1111 parent compounds.Comment: several parts were rewritten for clarity. 6 pages, 3 figures, 1 tabl

    Joint CLT for several random sesquilinear forms with applications to large-dimensional spiked population models

    Get PDF
    published_or_final_versio

    Quantum Dot in Z-shaped Graphene Nanoribbon

    Full text link
    Stimulated by recent advances in isolating graphene, we discovered that quantum dot can be trapped in Z-shaped graphene nanoribbon junciton. The topological structure of the junction can confine electronic states completely. By varying junction length, we can alter the spatial confinement and the number of discrete levels within the junction. In addition, quantum dot can be realized regardless of substrate induced static disorder or irregular edges of the junction. This device can be used to easily design quantum dot devices. This platform can also be used to design zero-dimensional functional nanoscale electronic devices using graphene ribbons.Comment: 4 pages, 3 figure

    Existence problem of proton semi-bubble structure in the 21+2_1^+ state of 34^{34}Si

    Full text link
    The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 21+2_1^+ state of 34^{34}Si. The experimental excitation energy and the B(E2) strength of the 21+2_1^+ state in 34^{34}Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 21+2_1^+ state and a small effect on the B(E2) value. Besides, its effect on the density distributions in the ground and 21+2_1^+ state of 34^{34}Si is negligible. Our present results with T36 and T44 show that the 21+2_1^+ state of 34^{34}Si is mainly caused by proton transiton from π1d5/2\pi 1d_{5/2} orbit to π2s1/2\pi 2s_{1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely.Comment: 6 pages, 3 figures, 3 table

    Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    Get PDF
    Due to intensifying human disturbance, over half of the world's tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t/ha) than in secondary forest (58.75 t/ha) or Eucalyptus plantation (38.99 t/ha) and lowest in bare land (19.9 t/ha). Analysis of δ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations
    corecore