256 research outputs found

    Modelling smart structures with segmented piezoelectric sensors and actuators

    Get PDF
    In this paper, a number of finite element models have been developed for comprehensive modelling of smart structures with segmented piezoelectric sensing and actuating patches. These include an eight-node solid-shell element for modelling homogeneous and laminated host structures as well as an eight-node solid-shell and a four-node piezoelectric membrane elements for modelling surface bonded piezoelectric sensing and actuating patches. To resolve the locking problems in these elements and improve their accuracy, assumed natural strain and hybrid stress formulations are employed. Furthermore, piezoelectric patches are often coated with metallization. The concept of electric nodes is introduced that can eliminate the burden of constraining the equality of the electric potential for physical nodes lying on the same metallization. A number of problems are studied by the developed finite element models and comparisons with other ad hoc element models are presented.postprin

    Stabilized plane and axisymmetric piezoelectric finite element models

    Get PDF
    This paper derives a four-node plane, a nine-node plane and a four-node axisymmetric stabilized elements for piezoelectric analysis. All elements are formulated by a stabilization approach founded on the generalized Hellinger-Reissner functional which employs stress, electric displacement, displacement and electric potential as the independent field variables. The lower and higher order stress and electric displacement are chosen to be orthogonal such that their coupling terms in the electromechanical flexibility matrices vanish. In the absence of the higher order modes, the elements are equivalent to their uniformly reduced integrated counterparts. Numerical examples are presented to illustrate that the stabilized elements are markedly more accurate than the standard fully integrated elements. © 2003 Elsevier B.V. All rights reserved.postprin

    Dynamic analysis of sugar metabolism in different harvest seasons of pineapple (Ananas comosus L. (Merr.))

    Get PDF
    In pineapple fruits, sugar accumulation plays an important role in flavor characteristics, which varies according to the stage of fruit development. Metabolic changes in the contents of fructose, sucrose and glucose and reducing sugar related to the activities of soluble acid invertase (AI), neutral invertase (NI), sucrose synathase (SS) and sucrose-phosphate synthase (SPS) were studied in winter and summer pineapple fruits in this paper. Sucrose was significantly increased in most of the harvesting winter fruits which reached the peak of 64.87 mg·g-1 FW at 130 days after anthesis, while hexose was mainly accumulated at the 90 day of the summer fruits in July. The ratio of hexose to sucrose was 5.92:0.73 from the winter fruit in February. Interestingly, the activities of SPS and SS synthetic direction of the harvested fruits in February were significantly higher than those in July, whereas the invertase activities were exactly opposite. NI activity showed a similar trend to AI, but the amount of NI activity was higher than AI in both months. Therefore, NI appears to be one of the vital enzymes in pineapple fruit development. Conclusively, the enzyme activities related to sugar play key roles in the eating of quality pineapple, which could be improved by cultivation in different seasons. So we can arbitrate different temperature to improve the quality of pineapple fruits according to market demand.Keywords: Pineapple (Ananas comosus), different harvest seasons, sucrose, sucrose phosphate synthase, sucrose synthas

    Giant schwannoma of thoracic vertebra: A case report

    Get PDF
    BACKGROUND,It is relatively rare for schwannomas to invade bone, but it is very rare for a large,mass to form concurrently in the paravertebral region. Surgical resection is the,only effective treatment. Because of the extensive tumor involvement and the,many important surrounding structures, the tumor needs to be fully exposed.,Most of the tumors are completely removed by posterior combined open-heart,surgery to relieve spinal cord compression, restore the stability of the spine and,maximize the recovery of nerve and spinal cord function. The main objective of,this article is to present a schwannoma that had invaded the T5 and T6 vertebral,bodies and formed a large paravertebral mass with simultaneous invasion of the,spinal canal and compression of the spinal cord.,CASE SUMMARY,A 40-year-old female suffered from intermittent chest and back pain for 8 years.,Computed tomography and magnetic resonance imaging scans showed a,paravertebral tumor of approximately 86 mm × 109 mm × 116 mm, where the,adjacent T5 and T6 vertebral bodies were invaded by the tumor, the right intervertebral,foramen was enlarged, and the tumor had invaded the spinal canal to,compress the thoracic medulla. The preoperative puncture biopsy diagnosed a,benign schwannoma. Complete resection of the tumor was achieved by a two-step,operation. In the first step, the thoracic surgeon adopted a lateral approach to,separate the thoracic tumor from the lung. In the second step, a spine surgeon,performed a posterior midline approach to dissect the tumor from the vertebral,junction through removal of the tumor from the posterior side and further,resection of the entire T5 and T6 vertebral bodies. The large bone defect was,reconstructed with titanium mesh, and the posterior root arch was nail-fixed. Due,to the large amount of intraoperative bleeding, we performed tumor angioembolization,before surgery to reduce and avoid large intraoperative bleeding. The,postoperative diagnosis of benign schwannoma was confirmed by histochemical,examination. There was no sign of tumor recurrence or spinal instability during,the 2-year follow-up.,CONCLUSION,Giant schwannoma is uncommon. In this case, a complete surgical resection of a,giant thoracic nerve sheath tumor that invaded part of the vertebral body and,compressed the spinal cord was safe and effective

    Multifunctional graphene woven fabrics

    Get PDF
    Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene

    Does sex matter in the associations between classic risk factors and fatal coronary heart disease in populations from the Asia-Pacific region?

    Get PDF
    Background: There is much interest in promoting healthy heart awareness among women. However, little is known about the reasons behind the lower rates of heart disease among women compared with men, and why this risk difference diminishes with age. Previous comparative studies have generally had insufficient numbers of women to quantify such differences reliably. Methods: We carried out an individual participant data meta-analysis of 39 cohort studies (32 from Asian countries and 7 from Australia and New Zealand). Cox models were used to estimate hazard ratios (HR) for coronary death, comparing men to women. Further adjustments were made for several proven coronary risk factors to quantify their contributions to the sex differential. Sex interactions were tested for the same risk factors. Results: During 4 million person-years of follow-up, there were 1989 (926 female) deaths from coronary heart disease (CHD). The age-adjusted and study-adjusted male/female HR (95% confidence interval [95% CI]) was 2.05 (1.89-2.22). At baseline, 54% of men vs. 7% of women were current smokers; hence, adjustment for smoking explained the largest component (20%) of this HR. A significant sex interaction was observed between systolic blood pressure (SBP) and CHD mortality such that a 10 mm Hg increase was associated with a 15% greater increase in the relative risk (RR) of coronary death in women compared with men (p = 0.002). Conclusions: Only a small amount of the sex differential in coronary death could be explained by differences in the prevalence of classic risk factors. Alternative explanations are required to explain the age-related attenuation of the sex difference in CHD risk. © Mary Ann Liebert, Inc.published_or_final_versio

    Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Get PDF
    BACKGROUND: Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. METHODOLOGY/PRINCIPAL FINDINGS: Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. CONCLUSIONS/SIGNIFICANCE: These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation
    corecore