790 research outputs found

    Frequency doubling in SBN crystal affected by poling and thermal treatment

    Get PDF
    Tesina realitzada en col.laboració amb l'Institut de Ciències FotòniquesThe random anti-parallel micro-ferroelectric domains in SBN (Strontium-Barium Niobate, Sr0.61Ba0.39Nb2O3, ) crystal can be used for efficient nonlinear optical processes at different frequencies. The ferroelectric domains in SBN crystal are easily influenced by temperature and electric field. By comparing different second harmonic generation (SHG) profiles and efficiencies of SBN crystal under electric field poling and thermal treatments at different temperatures, and observing the ferroelectric domain structures (sizes and directions) under the scanning electronic microscope (SEM), the mechanism of how the thermal treatment and poling affects the SBN crystal’s inner structure, thus the frequency doubling process, is revealed. We found that for the poled SBN crystal, the SHG emission shows a speckle pattern; on the other hand, after a thermal treatment there is a clear maximum in the propagation direction of the fundamental light

    Longitudinal Causal Inference of Cognitive Function and Depressive Symptoms in Elderly People

    Get PDF
    Objective: the association between depressive symptoms (Center for Epidemiologic Studies Depression Scale [CES-D]) and subsequent cognitive function (Mini-Mental State Examination [MMSE]) is equivocal in literature. To examine the causal relationship between them, we use longitudinal data on MMSE and CESD and causal inference to illustrate the relationship between two health outcomes. Method:  Data were obtained from the Hispanic Established Populations for Epidemiologic Studies of the Elderly. Participants included 3050 noninstitutionalized Mexican Americans aged 65 and older followed from 1993-2001. Cognitive function and depressive symptoms were assessed using the MMSE and CESD at baseline and at 2, 5, and 7 years of follow-up. Independent variables were sociodemographics, CESD, medical conditions. Marginal structural causal models were employed to evaluate the extent to which cognitive function depend not only on depressive symptoms measured at a single point in time but also on an individual’s entire depressive symptoms history.  Discussion: our results indicate that if intervention to reduce 1 points of depressive symptoms were made at two years prior to assessing cognitive function, they would result in average improvement in cognitive function of 0.12, 95% CI [0.06, 0.18],P<.0001. Conclusion: The results suggest that health intervention of depressive symptoms would be useful in prevention of cognitive impair. &nbsp

    A visibility graph approach to CNY exchange rate networks and characteristic analysis

    Get PDF
    We find that exchange rate networks are significantly similar from the perspective of topological structure, though with relatively great differences in fluctuation characteristics from perspective of exchange rate time series. First, we transform central parity rate time series of US dollar, Euro, Yen, and Sterling against CNY into exchange rate networks with visibility graph algorithm and find consistent topological characteristics in four exchange rate networks, with their average path lengths 5 and average clustering coefficients 0.7. Further, we reveal that all four transformed exchange rate networks show hierarchical structure and small-world and scale-free properties, with their hierarchy indexes 0.5 and power exponents 1.5. Both of the US dollar network and Sterling network exhibit assortative mixing features, while the Euro network and Yen network exhibit disassortative mixing features. Finally, we research community structure of exchange rate networks and uncover the fact that the communities are actually composed by large amounts of continuous time point fractions and small amounts of discrete time point fractions. In this way, we can observe that the spread of time series values corresponding to nodes inside communities is significantly lower than the spread of those values corresponding to nodes of the whole networks

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI

    Light generation and manipulation from nonlinear randomly distributed domains in SBN

    Get PDF
    Disordered media with refractive index variations can be found in the atmosphere, the ocean, and in many materials or biological tissues. Several technologies that make use of such random media, as image formation, satellite communication, astronomy or microscopy, must deal with an unavoidable light scattering or diffusion. This is why for many years light propagation through random media has been a subject of intensive study. Interesting phenomena such as speckle, coherent backscattering or random lasing have been discovered and studied. More recently, researchers are beginning to investigate mechanisms to control light propagation through such media to enhance light transmission and sharpen the focus. On the other hand, it has been known for several years that nonlinear random structures are able to generate light in an ultra-broad frequency range, without the need of angle or temperature tuning. Particularly interesting is the nonlinear light diffusion observed from materials with no change in the refractive index and which appear to be fully diffusion less to linear light propagation. However, a comprehensive understanding of the scattering when a nonlinear interaction takes place has not yet been given. The core of the thesis focuses on the study of the nonlinear light generation and propagation from crystalline structures with disordered nonlinear domains but with a homogenous refractive index. A random distribution of non-linear domains is found naturally in the Strontium Barium Niobate (SBN) ferroelectric crystal. As opposed to other mono-domain nonlinear optical crystals commonly used for frequency up-conversion, such as Potassium Titanyl Phosphate (KTP) or Lithium Niobate (LiNbO3), in SBN the nonlinear domain size is, typically, on the order of the coherence length or many times smaller than the size of the whole crystal. Such domains are usually several times longer in the c-axis direction relative to the plane perpendicular to that axis. Adjacent domains exhibit antiparallel polarization along such crystalline axis, with no change in refractive index. In Chapter 1 we give a brief introduction to light generation and propagation in random media, describing the speckle, light manipulation and second harmonic generation (SHG). In chapter 2, we study the nonlinear light generation and manipulation from a transparent SBN crystal. In its theoretical description we use a two-dimensional random structure consisting of a homogeneous background polarized in one direction with uniform rectangular boundaries, and a group of square reverse polarization domains with random sizes and located in random positions. The SHG from each domain is obtained using the Green's function formalism. In the experiments, we alter the ferroelectric domain structure of the SBN crystal by electric field poling or thermal treatments at different temperatures. The SBN crystal structures after such different treatments are shown to be characterized by their SHG patterns. In chapter 3, by measuring the spatial distribution of the second harmonic light in the c-plane, we demonstrate that the randomness in the nonlinear susceptibility results in a speckle pattern. We explain the observations as a result of the linear interference among the second harmonic waves generated in all directions by each of the nonlinear domains. In chapter 4, we report on our experimental implementation of the wave-front phase modulation method to control and focus the SHG speckle from the random SBN crystal. This research creates a bridge between light phase modulation and nonlinear optics. Finally we perform a theoretical analysis to demonstrate enhanced efficiencies for nonlinear light focusing by the wave-front phase modulation method in different directions. Various types of nonlinear structures are considered, including the homogeneous rectangular crystal, the group of random domains, and the combination of both
    • …
    corecore