87 research outputs found

    Fracturing and thermal extraction optimization methods in enhanced geothermal systems

    Get PDF
    Fracture networks, fluid flow and heat extraction within fractures constitute pivotal aspects of enhanced geothermal system advancement. Conventional hydraulic fracturing in dry hot rock reservoirs typically requires high breakdown pressure and only produces a single major fracture morphology. Thus, it is imperative to explore better fracturing methods and consider more reasonable coupling mechanisms to improve the prediction efficiency. Cyclic fracturing using liquid nitrogen instead of water can generate more complex fracture networks and improve the fracturing performance. The simulation of fluid flow and heat transfer processes in the fracture network is crucial for an enhanced geothermal system, which requires a more comprehensive coupled thermo-hydro-mechanical-chemical model for matching, especially the characterization of coupling mechanism between the chemical and mechanical field. Based on the results of field engineering, laboratory experiments and numerical simulation, the optimum engineering scheme can be obtained by a multi-objective optimization and decision-making method. Furthermore, combining it with the deep-learning-based proxy model to achieve dynamic optimization with time is a meaningful future research direction.Document Type: PerspectiveCited as: Yang, R., Wang, Y., Song, G., Shi, Y. Fracturing and thermal extraction optimization methods in enhanced geothermal systems. Advances in Geo-Energy Research, 2023, 9(2): 136-140. https://doi.org/10.46690/ager.2023.08.0

    Phytoestrogen -zearalanol ameliorates memory impairment and neuronal DNA oxidation in ovariectomized mice

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the effect of a novel phytoestrogen, α-Zearalanol, on Alzheimer's disease-related memory impairment and neuronal oxidation in ovariectomized mice. METHODS: Female C57/BL6 mice were ovariectomized or received sham operations and treatment with equivalent doses of 17β-estradiol or α-Zearalanol for 8 weeks. Their spatial learning and memory were analyzed using the Morris water maze test. The antioxidant enzyme activities and reactive oxygen species generation, neuronal DNA oxidation, and MutT homolog 1 expression in the hippocampus were measured. RESULTS: Treatment with 17β-estradiol or α-Zearalanol significantly improved spatial learning and memory performance in ovariectomized mice. In addition, 17β-estradiol and α-Zearalanol attenuated the decrease in antioxidant enzyme activities and increased reactive oxygen species production in ovariectomized mice. The findings indicated a significant elevation in hippocampi neuronal DNA oxidation and reduction in MutT homolog 1 expression in estrogen-deficient mice, but supplementation with 17β-estradiol or α-Zearalanol efficaciously ameliorated this situation. CONCLUSION: These results demonstrate that α-Zearalanol is potentially beneficial for improving memory impairments and neuronal oxidation damage in a manner similar to that of 17β-estradiol. Therefore, the compound may be a potential therapeutic agent that can ameliorate neurodegenerative disorders related to estrogen deficiency

    Radioprotective Effect of Grape Seed Proanthocyanidins In Vitro and In Vivo

    Get PDF
    We have demonstrated that grape seed proanthocyanidins (GSPs) could effectively scavenge hydroxyl radical (•OH) in a dose-dependent manner. Since most of the ionizing radiation- (IR-) induced injuries were caused by •OH, this study was to investigate whether GSPs would mitigate IR-induced injuries in vitro and in vivo. We demonstrated that GSPs could significantly reduce IR-induced DNA strand breaks (DSBs) and apoptosis of human lymphocyte AHH-1 cells. This study also showed that GSPs could protect white blood cells (WBC) from IR-induced injuries, speed up the weight of mice back, and decrease plasma malondialdehyde (MDA), thus improving the survival rates of mice after ionizing radiation. It is suggested that GSPs have a potential as an effective and safe radioprotective agent

    Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice

    Get PDF
    Molecular hydrogen (H2) has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR). All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM) observation, forced swim test (FST), the open field test (OFT), the chromosome aberration (CA), the peripheral blood cells parameters analysis, the sperm abnormality (SA), the lymphocyte transformation test (LTT), and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR

    Genome-wide association study of maize resistance to Pythium aristosporum stalk rot

    Get PDF
    Stalk rot, a severe and widespread soil-borne disease in maize, globally reduces yield and quality. Recent documentation reveals that Pythium aristosporum has emerged as one of the dominant causal agents of maize stalk rot. However, a previous study of maize stalk rot disease resistance mechanisms and breeding had mainly focused on other pathogens, neglecting P. aristosporum. To mitigate crop loss, resistance breeding is the most economical and effective strategy against this disease. This study involved characterizing resistance in 295 inbred lines using the drilling inoculation method and genotyping them via sequencing. By combining with population structure, disease resistance phenotype, and genome-wide association study (GWAS), we identified 39 significant single-nucleotide polymorphisms (SNPs) associated with P. aristosporum stalk rot resistance by utilizing six statistical methods. Bioinformatics analysis of these SNPs revealed 69 potential resistance genes, among which Zm00001d051313 was finally evaluated for its roles in host defense response to P. aristosporum infection. Through virus-induced gene silencing (VIGS) verification and physiological index determination, we found that transient silencing of Zm00001d051313 promoted P. aristosporum infection, indicating a positive regulatory role of this gene in maize’s antifungal defense mechanism. Therefore, these findings will help advance our current understanding of the underlying mechanisms of maize defense to Pythium stalk rot

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
    • …
    corecore