29 research outputs found

    Investigating the integrate and fire model as the limit of a random discharge model: a stochastic analysis perspective

    Full text link
    In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to establish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    A synchronization-capturing multi-scale solver to the noisy integrate-and-fire neuron networks

    Full text link
    The noisy leaky integrate-and-fire (NLIF) model describes the voltage configurations of neuron networks with an interacting many-particles system at a microscopic level. When simulating neuron networks of large sizes, computing a coarse-grained mean-field Fokker-Planck equation solving the voltage densities of the networks at a macroscopic level practically serves as a feasible alternative in its high efficiency and credible accuracy. However, the macroscopic model fails to yield valid results of the networks when simulating considerably synchronous networks with active firing events. In this paper, we propose a multi-scale solver for the NLIF networks, which inherits the low cost of the macroscopic solver and the high reliability of the microscopic solver. For each temporal step, the multi-scale solver uses the macroscopic solver when the firing rate of the simulated network is low, while it switches to the microscopic solver when the firing rate tends to blow up. Moreover, the macroscopic and microscopic solvers are integrated with a high-precision switching algorithm to ensure the accuracy of the multi-scale solver. The validity of the multi-scale solver is analyzed from two perspectives: firstly, we provide practically sufficient conditions that guarantee the mean-field approximation of the macroscopic model and present rigorous numerical analysis on simulation errors when coupling the two solvers; secondly, the numerical performance of the multi-scale solver is validated through simulating several large neuron networks, including networks with either instantaneous or periodic input currents which prompt active firing events over a period of time.Comment: 25 Pages, 18 Figure

    Spatial-Perceptual Embedding with Robust Just Noticeable Difference Model for Color Image Watermarking

    No full text
    In the robust image watermarking framework, watermarks are usually embedded in the direct current (DC) coefficients in discrete cosine transform (DCT) domain, since the DC coefficients have a larger perceptual capacity than any alternating current (AC) coefficients. However, DC coefficients are also excluded from watermark embedding with the consideration of avoiding block artifacts in watermarked images. Studies on human vision suggest that perceptual characteristics can achieve better image fidelity. With this perspective, we propose a novel spatial–perceptual embedding for a color image watermarking algorithm that includes the robust just-noticeable difference (JND) guidance. The logarithmic transform function is used for quantization embedding. Meanwhile, an adaptive quantization step is modeled by incorporating the partial AC coefficients. The novelty and effectiveness of the proposed framework are supported by JND perceptual guidance for spatial pixels. Experiments validate that the proposed watermarking algorithm produces a significantly better performance

    Integrated production inventory routing planning with time windows for perishable food

    No full text
    International audienceThis paper investigates an integrated production inventory routing problem with time windows where a central depot is responsible for supplying single type of perishable food to multiple retailers within the planned time horizon. A mixed integer linear programming (MILP) model aiming at maximizing the total profit is formulated with explicitly tracing the food quality. To strengthen the formulation, a series of valid inequalities are introduced. Randomly generated instances with up to 40 retailers and 3 time periods are used to verify the effectiveness and the complexity of the proposed model, which is solved by the linear programming solver CPLEX. The computational results show that the proposed model is able to provide integrated plan for the decision makers, and instances with 20 retailers and 3 time periods are optimally solved with 102.97s on average. The results also indicate that the introduced valid inequalities are useful in helping CPLEX generate better upper bounds (maximization problem) for 20 out of 23 instances that are not optimally solved within the time limit

    Integrated Production Inventory Routing Planning for Intelligent Food Logistics Systems

    No full text
    International audienceAn intelligent logistics system is an importantbranch of intelligent transportation systems. It is a great challengeto develop efficient technologies and methodologies toimprove its performance in meeting customer requirements whilethis is highly related to people’s life quality. Its high efficiencycan reduce food waste, improve food quality and safety, andenhance the competitiveness of food companies. In this paper,we investigate a new integrated planning problem for intelligentfood logistics systems. Two objectives are considered: minimizingtotal production, inventory, and transportation cost and maximizingaverage food quality. For the problem, a bi-objective mixedinteger linear programming model is formulated first. Then,a new method that combines an -constraint-based two-phaseiterative heuristic and a fuzzy logic method is developed to solveit. Computational results on a case study and on 185 randomlygenerated instances with up to 100 retailers and 12 periods showthe effectiveness and efficiency of the proposed method
    corecore