328 research outputs found
Frequency-dependent attenuation and elasticity in unconsolidated earth materials: effect of damping
We use the Discrete Element Method (DEM) to understand the underlying
attenuation mechanism in granular media, with special applicability to the
measurements of the so-called effective mass developed earlier. We consider
that the particles interact via Hertz-Mindlin elastic contact forces and that
the damping is describable as a force proportional to the velocity difference
of contacting grains. We determine the behavior of the complex-valued normal
mode frequencies using 1) DEM, 2) direct diagonalization of the relevant
matrix, and 3) a numerical search for the zeros of the relevant determinant.
All three methods are in strong agreement with each other. The real and the
imaginary parts of each normal mode frequency characterize the elastic and the
dissipative properties, respectively, of the granular medium. We demonstrate
that, as the interparticle damping, , increases, the normal modes exhibit
nearly circular trajectories in the complex frequency plane and that for a
given value of they all lie on or near a circle of radius centered on
the point in the complex plane, where . We show that each
normal mode becomes critically damped at a value of the damping parameter , where is the (real-valued) frequency when
there is no damping. The strong indication is that these conclusions carry over
to the properties of real granular media whose dissipation is dominated by the
relative motion of contacting grains. For example, compressional or shear waves
in unconsolidated dry sediments can be expected to become overdamped beyond a
critical frequency, depending upon the strength of the intergranular damping
constant.Comment: 28 pages, 7 figure
Preliminary research of recombinant matrix extracellular phosphoglycoprotein (MEPE) mineralization ability in vitro
The matrix extracellular phosphoglycoprotein (MEPE) gene is highly expressed in tumors that cause oncogenic hypophosphatemic osteomalacia (OHO). MEPE is also known as one of the bone-tooth matrix proteins and is associated with bone and teeth mineralization. We developed a rabbit polyclonal antibody directed against recombinant human MEPE after cloning its cDNA from the cDNA library of a human brain cDNA library. Using this anti-body, we analyzed the distribution of MEPE in dog dental germ tissue by immunohistochemistry. In these specimens, MEPE was predominantly expressed by odontoblast cells and predentin, but not by dental pulp cells. Furthermore, we used von kossa staining and the results suggested that, MEPE could induce mineralization and we propose that this protein had a potential effect on dental rehabilitation.Key words: Matrix extracellular phosphoglycoprotein (MEPE), mineralization Von kossa
An analysis of managed flood storage options for selected levees along the Lower Illinois River for enhancing flood protection report no. 4: flood storage reservoirs and flooding on the Lower Illinois River
"Prepared for the Office of Water Resources, Illinois Department of Natural Resources.
Avoiding catastrophic failure in correlated networks of networks
Networks in nature do not act in isolation but instead exchange information,
and depend on each other to function properly. An incipient theory of Networks
of Networks have shown that connected random networks may very easily result in
abrupt failures. This theoretical finding bares an intrinsic paradox: If
natural systems organize in interconnected networks, how can they be so stable?
Here we provide a solution to this conundrum, showing that the stability of a
system of networks relies on the relation between the internal structure of a
network and its pattern of connections to other networks. Specifically, we
demonstrate that if network inter-connections are provided by hubs of the
network and if there is a moderate degree of convergence of inter-network
connection the systems of network are stable and robust to failure. We test
this theoretical prediction in two independent experiments of functional brain
networks (in task- and resting states) which show that brain networks are
connected with a topology that maximizes stability according to the theory.Comment: 40 pages, 7 figure
Percolation in Interdependent and Interconnected Networks: Abrupt Change from Second to First Order Transition
Robustness of two coupled networks system has been studied only for
dependency coupling (S. Buldyrev et. al., Nature, 2010) and only for
connectivity coupling (E. A. Leicht and R. M. D'Souza, arxiv:09070894). Here we
study, using a percolation approach, a more realistic coupled networks system
where both interdependent and interconnected links exist. We find a rich and
unusual phase transition phenomena including hybrid transition of mixed first
and second order i.e., discontinuities like a first order transition of the
giant component followed by a continuous decrease to zero like a second order
transition. Moreover, we find unusual discontinuous changes from second order
to first order transition as a function of the dependency coupling between the
two networks.Comment: 4pages,6figure
Manipulating infrared photons using plasmons in transparent graphene superlattices
Superlattices are artificial periodic nanostructures which can control the
flow of electrons. Their operation typically relies on the periodic modulation
of the electric potential in the direction of electron wave propagation. Here
we demonstrate transparent graphene superlattices which can manipulate infrared
photons utilizing the collective oscillations of carriers, i.e., plasmons of
the ensemble of multiple graphene layers. The superlattice is formed by
depositing alternating wafer-scale graphene sheets and thin insulating layers,
followed by patterning them all together into 3-dimensional
photonic-crystal-like structures. We demonstrate experimentally that the
collective oscillation of Dirac fermions in such graphene superlattices is
unambiguously nonclassical: compared to doping single layer graphene,
distributing carriers into multiple graphene layers strongly enhances the
plasmonic resonance frequency and magnitude, which is fundamentally different
from that in a conventional semiconductor superlattice. This property allows us
to construct widely tunable far-infrared notch filters with 8.2 dB rejection
ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a
superlattice with merely five graphene atomic layers. Moreover, an unpatterned
superlattice shields up to 97.5% of the electromagnetic radiations below 1.2
terahertz. This demonstration also opens an avenue for the realization of other
transparent mid- and far-infrared photonic devices such as detectors,
modulators, and 3-dimensional meta-material systems.Comment: under revie
Mid-infrared plasmons in scaled graphene nanostructures
Plasmonics takes advantage of the collective response of electrons to
electromagnetic waves, enabling dramatic scaling of optical devices beyond the
diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns)
plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100
times smaller than the on-resonance light wavelength in free space. We reveal,
for the first time, the crucial damping channels of graphene plasmons via its
intrinsic optical phonons and scattering from the edges. A plasmon lifetime of
20 femto-seconds and smaller is observed, when damping through the emission of
an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2
substrate underneath the graphene nanostructures lead to a significantly
modified plasmon dispersion and damping, in contrast to a non-polar
diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the
plasmon resonance frequencies are close to the polar phonon frequencies. Our
study paves the way for applications of graphene in plasmonic waveguides,
modulators and detectors in an unprecedentedly broad wavelength range from
sub-terahertz to mid-infrared.Comment: submitte
A framework for the successful implementation of food traceability systems in China
Implementation of food traceability systems in China faces many challenges due to the scale, diversity and complexity of China’s food supply chains. This study aims to identify critical success factors specific to the implementation of traceability systems in China. Twenty-seven critical success factors were identified in the literature. Interviews with managers at four food enterprises in a pre-study helped identify success criteria
and five additional critical success factors. These critical success factors were tested through a survey of managers in eighty-three food companies. This study identifies six dimensions for critical success factors: laws, regulations and standards; government support; consumer knowledge and support; effective management and communication; top management and vendor support; and information and system quality
- …