84 research outputs found

    Caractérisations physico-chimiques des biominéraux carbonatés de Mollusques actuels et fossiles (le cas des structures entrecroisées)

    Get PDF
    Parmi la diversité des types microstructuraux que l on peut trouver dans les coquilles des Mollusques, les architectures entrecroisées (lamellaire-croisé, lamellaire-croisé complexe, folié-croisé) sont de loin les plus abondantes. Mais elles restent, de par leurs organisations tridimensionnelles complexes, peu documentées : la majorité des études de biominéralisation, et les différents modèles qui en découlent, sont en effet essentiellement basés sur des architectures plus simples (telles que les couches nacrées ou prismatiques). Or il convient, si l'on souhaite aboutir à une meilleure compréhension des mécanismes fondamentaux qui dirigent la minéralisation de ces biocarbonates, de vérifier dans quelle mesure les modèles développés à partir de coquilles simples sont aussi applicables à des organisations microstructurales plus complexes. Cette étude se focalise donc sur les couches entrecroisées des coquilles de quelques Mollusques, dans le but de mettre en évidence les différents niveaux du contrôle biologique que l'organisme exerce sur leur formation et leur croissance. À cette fin, des techniques de caractérisation in-situ des assemblages organiques sont privilégiées, en relation étroite avec l analyse des organisations microstructurales et des mécanismes de biocristallisation à fine échelle. Quelques aspects de la diagénèse de ces microstructures seront aussi abordés, à travers l étude de coquilles fossiles de Patella sp (~100 ka) et Velates perversus (~50 Ma).Among the variety of microstructural types that can be found within Molluscs shells, intercrossed structures (crossed-lamellar, complex crossed-lamellar and cross-foliated) are by far the most commonly found. They are, however, still poorly documented - mainly due to their complex 3D organization. The majority of biomineralization studies, and the resulting models, are indeed essentially based on simple architectures (such as nacreous or prismatic layers). In order to achieve a better understanding of the fundamental mechanisms that drive the mineralization of such biocarbonates, it is therefore mandatory to check to which extent models developed from simple shells stay consistent when applied to more complex microstructural organizations. The present study focuses on intercrossed layers of several Mollusk shells, in order to highlight the various levels of biological control exerted by the organism on their formation and growth. In-situ techniques are used to characterize biochemical compositions, in close correlation with microstructural patterns, as well as fine-scale biocrystallization processes. Some peculiar features of the diagenesis of these microstructures are illustrated, through the study of fossil shells from Patella sp (~100 ky) and Velates perversus (~50 My).PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Unusual Micrometric Calcite-Aragonite Interface in the Abalone Shell Haliotis (Mollusca, Gastropoda)

    Get PDF
    Species of Haliotis (abalone) show high variety in structure and mineralogy of the shell. One of the European species (Haliotis tuberculata) in particular has an unusual shell structure in which calcite and aragonite coexist at a microscale with small patches of aragonite embedded in larger calcitic zones. A detailed examination of the boundary between calcite and aragonite using analytical microscopies shows that the organic contents of calcite and aragonite differ. Moreover, changes in the chemical composition of the two minerals seem to be gradual and define a micrometric zone of transition between the two main layers. A similar transition zone has been observed between the layers in more classical and regularly structured mollusk shells. The imbrication of microscopic patches of aragonite within a calcitic zone suggests the occurrence of very fast physiological changes in these tax

    Structural, mineralogical, and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia

    Get PDF
    A series of Polynesian pearls has been investigated with particular attention to the structural and compositional patterns of the early developmental stages of the pearl layer. These initial steps in pearl formation bear witness of the metabolic changes that have occurred during the pearl-sac formation. The resulting structurally and biochemically complex structures have been investigated using a variety of techniques that provide us with information concerning both mineral phases and the organic components. Results are discussed with respect to our understanding of the biomineralization mechanisms, as well as for the grafting process

    From visible light to X-ray microscopy: major steps in the evolution of developmental models for calcification of invertebrate skeletons

    Get PDF
    The calcareous skeletons built by invertebrate organisms share a paradoxical property. Although growing outside the mineralizing cell layers the crystal-like skeleton units exhibit morphologies and three-dimensional arrangements that imply an efficient link between crystallization process and taxonomy. Almost two centuries of investigation led to a series of developmental models in which biological and physical or chemical influences are variously balanced. Recent innovative methods allow for their re-examination. From control of the overall shape of the shell to photo-spectroscopic evidence at the atomic level, influence of the biological processes on mineral properties may be a widely shared specificity of the calcareous biomineralization mechanism

    Gains and losses of coral skeletal porosity changes with ocean acidification acclimation

    Get PDF
    Ocean acidi\ufb01cation is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic bene\ufb01ts these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton\u2019s structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean

    La fossilisation des tissus dentaires et osseux : structure, composition, implications

    No full text
    Os et dents présents dans les sites archéologiques fournissent des informations sur la biodiversité, l’âge du site, le paléoenvironnement. Toutefois, les processus intervenant dès la mort de l’animal (prédation) jusqu’à sa récolte modifient de façon très variable la structure de ces tissus, et leur composition. Ces altérations, ou diagenèse, entrainent des biais dans l’interprétation des signaux biogéochimiques, ou dans les méthodes utilisant les abondances relatives de taxons, qui servent de base aux reconstitutions des environnements anciens ou à la datation. Un contrôle de la structure des tissus (micro- et nanostructure), ainsi que l’utilisation de techniques permettant de connaitre avec précision la localisation des analyses chimiques dans le fossile permettent d’évaluer l’intensité de la diagenèse et de réduire les biais dans les interprétations.Bones and teeth in archaeological sites provide data on the past biodiversity, the age of the site and palaeoenvironment. Nevertheless, these remains are not intact. Predation produces damages, and these modifications preclude the mechanical and climatic alterations. Finally, buried samples are modified depending on the geological environment. Thus, both structure and composition of bones and teeth are modified, so that the palaeoenvironmental reconstructions or datation are biased. Quantitative methods using ratios of bones, or ratios of species, are also affected. A detailed study of the structure (micro- to nanostructure) of the tissues, and localized chemical analyses allowing to correlate structure and composition must be favored to minimize biased interpretations

    Vertebrate Taphonomy and Diagenesis: Implications of Structural and Compositional Alterations of Phosphate Biominerals

    No full text
    Biominerals are recorders of evolution and palaeoenvironments. Predation is one of the most frequent modes leading to the concentration of small vertebrates in fossil assemblages. Consumption by predators produces damages on bones and teeth from prey species, and one of the greatest challenges to taphonomists is differentiating original biological and secondary, geologically altered attributes of fossils. Excellent morphological preservation is often used to assume that the structure and composition of fossils are not modified. Nevertheless, during predation and fossilization, both the physical structure and chemical composition of enamel, dentine and bone are altered, the degree and extent of which varies from site to site, depending on the nature of the burial environment. A relationship between the surficial alterations and the compositional changes which take place during fossilization has yet to be established. Herein, I present a review of old and recent taphonomic studies that collectively reveal the wide diversity of microstructural and chemical changes that typically take place during fossilization of vertebrate remains, including common taphonomic biases and the challenges inherent to reconstructing the history of vertebrate fossil assemblages
    corecore