179 research outputs found

    Smooth Flow in Diamond: Atomistic Ductility and Electronic Conductivity

    Full text link
    Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound implications for elucidating and predicting diamond’s anomalous behaviors at extreme conditions

    First-principles Study of High-Pressure Phase Stability and Superconductivity of Bi4I4

    Full text link
    Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to the semiconducting nature of ambient-pressure Bi4I4, the two high-pressure phases are metallic, in agreement with reported electrical measurements. The ɛ−Bi4I4 phase exhibits distinct ionic states of Iδ− and (Bi4I3)δ + (δ=0.4123 e), driven by a pressure-induced volume reduction. We show that both ɛ- and ζ−Bi4I4 are superconductors, and the emergence of pressure-induced superconductivity might be intimately linked to the underlying structural phase transitions

    Single nucleotide polymorphisms in thymic stromal lymphopoietin gene are not associated with allergic rhinitis susceptibility in Chinese subjects

    Get PDF
    BACKGROUND: Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine, implicated in the development and progression of allergic diseases. Recent studies have demonstrated significantly increased expression and synthesis of TSLPin nasal mucosa of patients with allergic rhinitis (AR), compared with nonallergic control subjects. Also, there is significant correlation between the level of TSLP mRNA and symptom severity in AR patients. In this study, we investigated whether polymorphisms in the TSLP gene were associated with increased risk of AR in the Chinese population. METHODS: In a candidate gene association study, we tested 11 single nucleotide polymorphisms (SNPs) in the TSLP gene in 368 AR and 325 control adult Han Chinese subjects from Beijing. The 11 SNPs were selected from the Chinese HapMap genotyping dataset to ensure complete genetic coverage. AR was established by questionnaire and clinical examination, and blood was drawn from all subjects for DNA extraction. The PLINK software package was used to perform statistical testing. RESULTS: In the single-locus analysis of AR risk, no significant differences in allele and genotype frequencies were found between AR and control subjects. Further logistic regression analyses adjusted for age and gender also failed to reveal significant associations between AR and the selected SNPs. Similarly, analysis stratified by gender, and haplotype or diplotype did not reveal any association with AR risk. CONCLUSION: Although TSLP presents itself as a good candidate for contributing to allergy, this study failed to find an association between specific SNPs in the TSLP gene and AR susceptibility in the Han Chinese population

    Multiple Attribute Decision Making with Interval Uncertainty for Artillery Recoil Resistance

    Get PDF
    To reduce loads acting on artillery carriages and obtain better values of recoil resistance, a study on multiple attribute decision making with interval uncertainty of the liquid orifice of a recoil mechanism was conducted. Taking the dimensions of the liquid orifice as the uncertainty variables, the uncertainty optimization model and algorithm based on three parameter interval were used to achieve the optimization schemes of the throttling bar outer dimensions with different tolerance grades. The multiple optimization schemes were sorted by employing the multiple attribute decision making method, in which the attribute weights were determined based on the maximum deviation method. The results show that the optimal design scheme is the one which considers simultaneously the parameter design and tolerance design of the throttling bar outer diameters. The optimal interval of the recoil resistance peaks and the optimal recoil resistance curve with sufficient fullness and flatness were obtained. The study results are beneficial for artillery design and evaluation concerning both the manufacturability of artillery and particular requirements of recoil resistance

    TAT-Modified Gold Nanoparticles Enhance the Antitumor Activity of PAD4 Inhibitors

    Get PDF
    Purpose: Histone citrullination by peptidylarginine deiminases 4 (PAD4) regulates the gene expression of tumor suppressor. In our previously study, YW3-56 (356) was developed as a potent PAD4 inhibitor for cancer therapy with novel function in the autophagy pathway. To enhance the antitumor activity, the PAD4 inhibitor 356 was modified by the well-established cationic penetrating peptide RKKRRQRRR (peptide TAT) and gold nanoparticles to obtain 356-TAT-AuNPs which could enhance the permeability of chemical drug in solid tumor. Methods: 356-TAT-AuNPs were prepared, and their morphology were characterized. The antitumor activity of 356-TAT-AuNPs was evaluated in vitro and in vivo. Results: 356-TAT-AuNPs exhibited higher anticancer activity against HCT-116, MCF-7 and A549 cells than 356 and 356-AuNPs. Compared with 356 and 356-AuNPs, 356-TAT-AuNPs entered the cytoplasm and nuclear, exhibited stronger anticancer activity by increasing apoptosis, inducing autophagy and inhibiting of histone H3 citrullination, and in HCT-116 xenograft mouse model, 356-TAT-AuNPs could improve the antitumor activity. Conclusion: The modified AuNPs with peptide TAT as drug delivery system are potent in delaying tumor growth and could be a powerful vehicle for profitable anticancer drug development. We believe that peptide TAT modification strategy may provide a simple and valuable method for improving antitumor activity of PAD4 inhibitors for clinical use.publishedVersio

    Superconductivity in Compression-Shear Deformed Diamond

    Get PDF
    Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting states via strain engineering. These results hold promise for discovering superconductivity in normally nonsuperconductive materials, thereby expanding the landscape of viable nontraditional superconductors and offering actionable insights for experimental exploration

    A multiyear assessment of air quality benefits from China’s emerging shale gas revolution: Urumqi as a case study

    Get PDF
    China is seeking to unlock its shale gas in order to curb its notorious urban air pollution, but robust assessment of the impact on PM2.5 pollution of replacing coal with natural gas for winter heating is lacking. Here, using a whole-city heating energy shift opportunity offered by substantial reductions in coal combustion during the heating periods in Urumqi, northwest China, we conducted a four-year study to reveal the impact of replacing coal with natural gas on the mass concentrations and chemical components of PM2.5. We found a significant decline in PM2.5, major soluble ions and metal elements in PM2.5 in January of 2013 and 2014 compared with the same periods in 2012 and 2011, reflecting the positive effects on air quality of using natural gas as a heating fuel throughout the city. This occurred following complete replacement with natural gas for heating energy in October 2012. The weather conditions during winter did not show any significant variation over the four years of the study. Our results indicate that China and other developing nations will benefit greatly from a change in energy source, that is, increasing the contribution of either natural gas or shale gas to total energy consumption with a concomitant reduction in coal consumption

    Xenon Iron Oxides Predicted as Potential Xe Hosts in Earth’s Lower Mantle

    Get PDF
    An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth’s atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth’s lower mantle. Calculated mass density and sound velocities validate Xe-Fe oxides as viable lower-mantle constituents. Meanwhile, Fe oxides do not react with Kr, Ar and Ne. It means that if Xe exists in the lower mantle at the same pressures as FeO2, xenon-iron oxides are predicted as potential Xe hosts in Earth’s lower mantle and could provide the repository for the atmosphere’s missing Xe. These findings establish robust materials basis, formation mechanism, and geological viability of these Xe-Fe oxides, which advance fundamental knowledge for understanding xenon chemistry and physics mechanisms for the possible deep-Earth Xe reservoir
    corecore