30 research outputs found

    Evapotranspiration and its partitioning during and following a mountain pine beetle infestation of a lodgepole pine stand in the interior of British Columbia, Canada

    Get PDF
    IntroductionMassive tree mortality events in western Canada due to widespread infestation by mountain pine beetle (MPB) are expected to impact local-to-regional evapotranspiration (ET) dynamics during and after a disturbance. How ecosystem-level ET and its components may vary with canopy-tree mortality (treefall) and subsequent understory recovery remains unclear.MethodsWe used 10 years of continuous eddy-covariance and remote-sensing data (2007–2016) and machine-learning models based on random forest and xgboost to determine forest- and climate-driven effects at temporal scales appropriate for a lodgepole pine-dominated stand following a major, five-year MPB disturbance initiated in the summer of 2006.ResultsTotal annual ET over the 10 years ranged from 207.2 to 384.6 mm, with annual plant transpiration (T) contributing to 57 ± 5.4% (mean ± standard deviation) of annual ET. Annual ET initially declined (2007–2011) and then increased (2011–2016), with ET and T/ET increasing at statistically non-significant rates of approximately 3.2 and 1.2% per year from 2007 to 2016. Air temperature (Ta) and vapor pressure deficit (VPD) were the most important predictors of seasonal variation in ET and T/ET during the 10-year period, with high Ta, VPD, and photosynthetically active radiation (PAR) causing ET and T/ET to increase. Annual ET increased with both increasing spring Ta and decreasing VPD. Annual T/ET was shown to increase with increasing VPD and decrease with increasing volumetric soil water content at a 5-cm depth (VWC5). Enhanced vegetation index (EVI, an indicator of canopy greenness) lagged T and overstory tree mortality, whereas previous- and current-year values of EVI were shown to be poor predictors of annual ET and T/ET.Discussion and conclusionsThese findings suggest that the promotion of climate factors on forest ecosystem-level water vapor fluxes may offset reductions promoted by MPB outbreaks. Climate processes affected water vapor fluxes more than biotic factors, like stand greenness, highlighting the need to include climate-regulatory mechanisms in predictive models of ET dynamics during and subsequent to stand disturbance. Climate and forest-greenness effects on water vapor fluxes need to be explored at even longer time scales, e.g., at decadal scales, to capture long-drawn-out trends associated with stand disturbance and its subsequent recovery

    Exploring the Immunotoxicity of Carbon Nanotubes

    Get PDF
    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Nonlinear elastic-plastic stress investigations on two interacting 3-D cracks in offshore pipelines subjected to different loadings

    No full text
    Multiple cracks can be observed in many of engineering structures such as pressure vessels and pipelines. Under continuous loading conditions, these small and closely distanced multiple cracks can grow together into a large one. Subsequently, it will pose a serious challenge to the integrity and safety of the engineering structures. Although a lot of research works were carried out for predicting fatigue growth of multiple cracks, few literatures focusing on nonlinear elastic-plastic analysis of multiple cracks’ fracture behaviors can be referred to. Therefore, to understand the influence of multiple cracks on integrity and safety of offshore pipelines is indeed desirable in engineering practice. In this study the systematic analyses on the fracture behaviors of two collinear 3-D cracks are performed for the pipelines subjected to a series of the loading conditions. A parametric study on the effect of different separation distances of the two interacting collinear cracks is performed. Based on the numerical results, the interaction factor is introduced to quantify the interaction of the two interacting cracks, and the proposed function for interaction factor can be useful for the preliminary fracture assessment of the surface crack affected by the interactions. Moreover, for biaxial loadings, the results indicate that the most severe fracture response can be produced by the tension load combined with high internal pressure.Published versio

    Fatigue investigations on steel pipeline containing 3D coplanar and non-coplanar cracks

    No full text
    Fluctuated loadings from currents, waves and sea ground motions are observed on offshore steel pipelines, and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnical infrastructures. In spite of the availability of efficient techniques and high-power computers for solving crack problems, investigations on the fatigue life of offshore pipelines with 3D interacting cracks are still rarely found in open literature. In the current study, systematic numerical investigations are performed on fatigue crack growth behaviours of offshore pipelines containing coplanar and non-coplanar cracks. Extended finite element method (XFEM) is adopted to simulate the fatigue crack growth. The qualitative validations of numerical results are made for certain cases with available experimental results. Parametric studies are conducted to investigate the influences of various important parameters on fatigue crack growth. The results will be helpful to assess the fatigue behaviours of steel pipeline with 3D interacting cracks.Ministry of Education (MOE)Nanyang Technological UniversityPublished versionThe authors would like to acknowledge the financial support for this project under Nanyang Technological University, Singapore’s Academic Research Fund (AcRF) Tier 1 Grant No. RG 168/16

    Binding process and free energy characteristics of cellulose chain into the catalytic domain of cellobiohydrolase TrCel7A

    No full text
    It was observed in experiments that the catalytic domain (CD) of Trichoderma reesei Cel7A (TrCel7A) hydrolyzes crystalline cellulose in a processive manner, but the underlying binding mechanism is still unknown. Here, through replica-exchange molecular dynamics simulations, we find that the loading and sucking-in process of the cellulose chain into CD is entropy-driven and enthalpy-unfavorable, which firmly relate to the desolvation of the binding channel of CD. During the loading process, hydrophobic interactions play a dominant role because several aromatic residues have been identified to guide the cellulose chain processing. At the active site, a transition from enthalpy- to entropy-driven is detected for the driving force. Such a finding reveals the indispensability of the catalytic reaction of the glycosidic bond to provide the energy to drive the movements of the cellulose chain. Our study reveals the interaction pictures between the cellulose chain and TrCel7A at the atomic level, which helps better understand the catalytic mechanism of TrCel7A.This work was supported by the National Natural Science Foundation of China under Grant 11874238 and Shandong Provincial Natural Science Foundation under Grant ZR2018MA043. The authors also acknowledge the support from the Fundamental Research Funds of Shandong University and State Key Laboratory of Microbial Technology Open Projects Fund (Project No. M2017-03)

    Dynamic Community Detection Based on Evolutionary DeepWalk

    No full text
    To fully characterize the evolution process of the topological structure of dynamic communities, we propose a dynamic community detection based on Evolutionary DeepWalk (DEDW) for the high-dimensional data and dynamic characteristics. First, DEDW solves the problem of data sparseness in the process of dynamic network data representation through graph embedding. Then, DEDW uses the DeepWalk algorithm to generate node embedding feature vectors based on the characteristics of the stable change of the community structure; finally, DEDW integrates historical network structure information to generate evolutionary graph features and implements dynamic community detection with the K-means algorithm. Experiments show that DEDW can mine the time-smooth change characteristics of dynamic communities, solve the problem of data sparseness in the process of node embedding, fully consider historical structure information, and improve the accuracy and stability of dynamic community detection

    Anisotropic protein diffusion on nanosurface

    No full text
    The unique puckered structure of α-phase phosphorene carbide (α-PC) results in anisotropic electronic and thermal transporting properties. In the present work, the interactions between a model protein, villin headpiece sub-domain (HP35), and the surface of α-PC and monolayer black phosphorus (MBP, another puckered nanostructure) were explored by molecular dynamic (MD) simulations. It is found that HP35 diffuses quickly only along the zigzag direction of the α-PC surface. On the MBP surface, HP35 migrates mainly along the zigzag direction but can also easily stride over the ridges and grooves along the armchair direction. Moreover, the mild binding strength between α-PC and HP35 does not cause distortion in the protein structure. The intrinsic biocompatibility of α-PC, which is distinct from several other widely studied nanomaterials, such as carbon nanotubes, graphene and MoS2, makes it a promising candidate in functional biomedical applications.This work is supported by the National Natural Science Foundation of China (Grant No. 11874238), the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA034) and Fundamental Research Funds of Shandong University
    corecore