206 research outputs found

    Nowhere human beings : a development analysis on displacement caused by gentrification in Tangjia Ling, Beijing

    Get PDF
    1 online resource (85 pages)Includes abstract.Includes bibliographical references (pages 73-85).Urbanization is irreversible and has proven to be the future of the world. What also comes in this process is the increasing number of the urban poor and growth of informal settlements as 1 in 4 people will be living in slums in recent future. How to properly handle informal settlements within their urban areas has become of vital importance for governments around the world, and is even more challenging for governments in developing countries. What is used most on dealing with informal settlements is gentrification, through which not only informal settlements are replaced by modern condos, but also local governments are able to receive large constant tax revenues. However, what is ignored in this process is resettlement and future livelihoods of the urban poor who are displaced, and the root cause of informal settlements is not tackled. The case of Tangjia Ling, Beijing, China is an example, as the previous informal settlements have been replaced by modern condos, while the wellbeing of the poor people affected was not properly taken care of. Similar cases take place around the world, as the governments ignore the marginalized groups and focus on economic benefits. This thesis is used to discuss the flaws of Beijing Municipal government in the process of gentrification. Detailed investigation, cooperation from the residents, and fairer mechanism of distributing compensation are required to avoid mass displacement brought by gentrification. The Beijing Municipal government has failed to incorporate these measures, which intensifies the difficulties of living of the affected groups

    Optical Technologies for Determination of Pesticide Residue

    Get PDF

    Applications of serum amino acid levels in identification of cancer

    Get PDF
    Chemometric method of uncorrelated linear discriminant analysis (ULDA) was applied to the data of amino acid levels in serum of lung cancer patients and healthy people, eventually successfully classifies the samples of cancer patients and healthy people. Simultaneously, several potential amino acid biomarkers were possibly chosen. So the method of amino acid levels combined with ULDA algorithm could be applied to the identification of cancer and exploration of tumor biomarker, which has certain practical value and application prospects

    Targeting microRNAs to Regulate the Integrity of the Blood–Brain Barrier

    Get PDF
    The blood–brain barrier (BBB) is a highly specialized neurovascular unit that protects the brain from potentially harmful substances. In addition, the BBB also engages in the exchange of essential nutrients between the vasculature and brain parenchyma, which is critical for brain homeostasis. Brain diseases, including neurological disorders and cerebrovascular diseases, are often associated with disrupted BBB integrity, evidenced by increased permeability. Therefore, defining the mechanisms underlying the regulation of BBB integrity is crucial for the development of novel therapeutics targeting brain diseases. MicroRNAs (miRNA), a type of small non-coding RNAs, are emerging as an important regulator of BBB integrity. Here we review recent developments related to the role of miRNAs in regulating BBB integrity

    Monitoring and quantitative evaluation of Faraday cup deterioration in a thermal ionization mass spectrometer using multidynamic analyses of laboratory standards

    Get PDF
    Accurate and precise isotopic ratio determinations using multi-collector (MC) mass spectrometers rely on accurate cross-calibration and long-term stability of the efficiencies of the multiple detectors. Isotopic analyses at the part per million (ppm) level of precision, which are commonly carried out with a thermal ionization mass spectrometer (TIMS) equipped with arrays of several Faraday cups, are the most sensitive to detector efficiency variations. Quantitative characterization of the Faraday cup efficiency change (also known as Faraday cup deterioration) during instrument usage can assist the analyst in making decisions about the replacement or cleaning of Faraday cups and in making corrections to the measured isotopic ratios, which are both essential to sustain the high measurement accuracy and long-term reproducibility of MC-TIMS. In this study, we present a method to quantitatively and continuously track the deterioration degrees of individual Faraday cups on MC-TIMS. The advantage of this method, compared to the previous ones, is that it uses only the results of regular repetitive analyses of laboratory standards, and no additional, specially designed experiments are required. Using this method, we monitored the performance of Triton Plus MC-TIMS at the Research School of Earth Sciences, the Australian National University, during a 6 month Sr isotope analytical session, and observed significant Faraday cup deterioration up to 150 ppm. The cups that have received the most abundant Sr atom deposition during the analytical session deteriorated the most, confirming that the accumulation of measured elements is the likely cause of changing Faraday cup efficiencies. The response of the cup efficiency to the accumulation of Sr atoms in the cup is complex and non-linear, and differs between cups in magnitude and direction, suggesting that Faraday cup deterioration is not a simple univariate function of the accumulation of measured elements.This project was funded by the Australian Research Council grant DP190100002 “The history of accretion in our Solar System”

    Strategies and challenges with the microbial conversion of methanol to high-value chemicals

    Get PDF
    As alternatives to traditional fermentation substrates, methanol (CH3OH), carbon dioxide (CO2) and methane (CH4) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering

    Spring, a Novel RING Finger Protein That Regulates Synaptic Vesicle Exocytosis

    Get PDF
    The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation

    Nano-additive manufacturing of multilevel strengthened aluminum matrix composites

    Get PDF
    Nanostructured materials are being actively developed, while it remains an open question how to rapidly scale them up to bulk engineering materials for broad industrial applications. This study propose an industrial approach to rapidly fabricate high-strength large-size nanostructured metal matrix composites and attempts to investigate and optimize the deposition process and strengthening mechanism. Here, advanced nanocrystalline aluminum matrix composites (nanoAMCs) were assembled for the first time by a novel nano-additive manufacturing method that was guided by numerical simulations (i.e. the in-flight particle model and the porefree deposition model). The present nanoAMC with a mean grain size <50 nm in matrix exhibited hardness eight times higher than the bulk aluminum and shows the highest hardness among all Al–Al2O3 composites reported to date in the literature, which are the outcome of controlling multiscale strengthening mechanisms from tailoring solution atoms, dislocations, grain boundaries, precipitates, and externally introduced reinforcing particles. The present high-throughput strategy and method can be extended to design and architect advanced coatings or bulk materials in a highly efficient (synthesizing a nanostructured bulk with dimensions of 50 × 20 × 4 mm3 in 9 min) and highly flexible (regulating the gradient microstructures in bulk) way, which is conducive to industrial production and application

    Clinical Application of Exosome Components

    Get PDF
    Exosomes belong to a subpopulation of EVs that carry different functional molecular cargoes, including proteins, nucleic acids, metabolites, and lipids. Notably, evidence has demonstrated that exosomes participate in bidirectional cell–cell communication and act as critical molecular vehicles in regulating numerous physiological and pathological processes. Since the specific contents within exosomes carry the information from their cells of origin, this property permits exosomes to act as valuable biomarkers. This chapter summarizes the potential use of exosome components in diagnosing, prognosis, or monitoring and treating multiple cancers and other non-neoplastic diseases. We also discuss the deficiency of basic applications, including the limitations of research methods and different research institutions and the differences generated by specimen sources. Thus, a better understanding of the problem of exosome detection may pave the way to promising exosome-based clinical applications

    Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor

    Get PDF
    Macrophage death in advanced atherosclerosis promotes necrosis and plaque destabilization. A likely cause of macrophage death is accumulation of free cholesterol (FC) in the ER, leading to activation of the unfolded protein response (UPR) and C/EBP homologous protein (CHOP)–induced apoptosis. Here we show that p38 MAPK signaling is necessary for CHOP induction and apoptosis. Additionally, two other signaling pathways must cooperate with p38-CHOP to effect apoptosis. One involves the type A scavenger receptor (SRA). As evidence, FC loading by non-SRA mechanisms activates p38 and CHOP, but not apoptosis unless the SRA is engaged. The other pathway involves c-Jun NH2-terminal kinase (JNK)2, which is activated by cholesterol trafficking to the ER, but is independent of CHOP. Thus, FC-induced apoptosis requires cholesterol trafficking to the ER, which triggers p38-CHOP and JNK2, and engagement of the SRA. These findings have important implications for understanding how the UPR, MAPKs, and the SRA might conspire to cause macrophage death, lesional necrosis, and plaque destabilization in advanced atherosclerotic lesions
    corecore