114 research outputs found

    Reply to the Editor

    Get PDF

    Segmentation of Juxtapleural Pulmonary Nodules Using a Robust Surface Estimate

    Get PDF
    An algorithm was developed to segment solid pulmonary nodules attached to the chest wall in computed tomography scans. The pleural surface was estimated and used to segment the nodule from the chest wall. To estimate the surface, a robust approach was used to identify points that lie on the pleural surface but not on the nodule. A 3D surface was estimated from the identified surface points. The segmentation performance of the algorithm was evaluated on a database of 150 solid juxtapleural pulmonary nodules. Segmented images were rated on a scale of 1 to 4 based on visual inspection, with 3 and 4 considered acceptable. This algorithm offers a large improvement in the success rate of juxtapleural nodule segmentation, successfully segmenting 98.0% of nodules compared to 81.3% for a previously published plane-fitting algorithm, which will provide for the development of more robust automated nodule measurement methods

    Lung Screening Benefits and Challenges: A Review of The Data and Outline for Implementation

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for almost a fifth of all cancer-related deaths. Annual computed tomographic lung cancer screening (CTLS) detects lung cancer at earlier stages and reduces lung cancer-related mortality among high-risk individuals. Many medical organizations, including the U.S. Preventive Services Task Force, recommend annual CTLS in high-risk populations. However, fewer than 5% of individuals worldwide at high risk for lung cancer have undergone screening. In large part, this is owing to delayed implementation of CTLS in many countries throughout the world. Factors contributing to low uptake in countries with longstanding CTLS endorsement, such as the United States, include lack of patient and clinician awareness of current recommendations in favor of CTLS and clinician concerns about CTLS-related radiation exposure, false-positive results, overdiagnosis, and cost. This review of the literature serves to address these concerns by evaluating the potential risks and benefits of CTLS. Review of key components of a lung screening program, along with an updated shared decision aid, provides guidance for program development and optimization. Review of studies evaluating the population considered "high-risk" is included as this may affect future guidelines within the United States and other countries considering lung screening implementation

    Volumetric Measurements of Lung Nodules with Multi-Detector Row CT: Effect of Changes in Lung Volume

    Get PDF
    OBJECTIVE: To evaluate how changes in lung volume affect volumetric measurements of lung nodules using a multi-detector row CT. MATERIALS AND METHODS: Ten subjects with asthma or chronic bronchitis who had one or more lung nodules were included. For each subject, two sets of CT images were obtained at inspiration and at expiration. A total of 33 nodules (23 nodules > or =3 mm) were identified and their volume measured using a semiautomatic volume measurement program. Differences between nodule volume on inspiration and expiration were compared using the paired t-test. Percent differences, between on inspiration and expiration, in nodule attenuation, total lung volume, whole lung attenuation, and regional lung attenuation, were computed and compared with percent difference in nodule volume determined by linear correlation analysis. RESULTS: The difference in nodule volume observed between inspiration and expiration was significant (p or =3 mm. The volume of nodules was measured to be larger on expiration CT than on inspiration CT (28 out of 33 nodules; 19 out of 23 nodules > or =3 mm). A statistically significant correlation was found between the percent difference of lung nodule volume and lung volume or regional lung attenuation (p or =3 mm. CONCLUSION: Volumetric measurements of pulmonary nodules were significantly affected by changes in lung volume. The variability in this respiration-related measurement should be considered to determine whether growth has occurred in a lung nodule.Supported by in part NIH NHLBI, RO1 HL 69149 and by a grant from Electronics and Telecommunications Research Institute

    The Lung Image Database Consortium (LIDC):ensuring the integrity of expert-defined "truth"

    Get PDF
    RATIONALE AND OBJECTIVES: Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish “truth” for algorithm development, training, and testing. The integrity of this “truth,” however, must be established before investigators commit to this “gold standard” as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the “truth” collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. MATERIALS AND METHODS: One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the “blinded read phase”), radiologists independently identified and annotated lesions, assigning each to one of three categories: “nodule ≥ 3mm,” “nodule < 3mm,” or “non-nodule ≥ 3mm.” For the second read (the “unblinded read phase”), the same radiologists independently evaluated the same CT scans but with all of the annotations from the previously performed blinded reads presented; each radiologist could add marks, edit or delete their own marks, change the lesion category of their own marks, or leave their marks unchanged. The post-unblinded-read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of (1) identification of potential errors introduced during the complete image annotation process (such as two marks on what appears to be a single lesion or an incomplete nodule contour) and (2) correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. RESULTS: A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. CONCLUSION: The establishment of “truth” must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems

    Evaluation of lung MDCT nodule annotation across radiologists and methods

    Get PDF
    RATIONALE AND OBJECTIVES: Integral to the mission of the National Institutes of Health–sponsored Lung Imaging Database Consortium is the accurate definition of the spatial location of pulmonary nodules. Because the majority of small lung nodules are not resected, a reference standard from histopathology is generally unavailable. Thus assessing the source of variability in defining the spatial location of lung nodules by expert radiologists using different software tools as an alternative form of truth is necessary. MATERIALS AND METHODS: The relative differences in performance of six radiologists each applying three annotation methods to the task of defining the spatial extent of 23 different lung nodules were evaluated. The variability of radiologists’ spatial definitions for a nodule was measured using both volumes and probability maps (p-map). Results were analyzed using a linear mixed-effects model that included nested random effects. RESULTS: Across the combination of all nodules, volume and p-map model parameters were found to be significant at P < .05 for all methods, all radiologists, and all second-order interactions except one. The radiologist and methods variables accounted for 15% and 3.5% of the total p-map variance, respectively, and 40.4% and 31.1% of the total volume variance, respectively. CONCLUSION: Radiologists represent the major source of variance as compared with drawing tools independent of drawing metric used. Although the random noise component is larger for the p-map analysis than for volume estimation, the p-map analysis appears to have more power to detect differences in radiologist-method combinations. The standard deviation of the volume measurement task appears to be proportional to nodule volume

    The International Association for the Study of Lung Cancer Early Lung Imaging Confederation.

    Get PDF
    PurposeTo improve outcomes for lung cancer through low-dose computed tomography (LDCT) early lung cancer detection. The International Association for the Study of Lung Cancer is developing the Early Lung Imaging Confederation (ELIC) to serve as an open-source, international, universally accessible environment to analyze large collections of quality-controlled LDCT images and associated biomedical data for research and routine screening care.MethodsELIC is an international confederation that allows access to efficiently analyze large numbers of high-quality computed tomography (CT) images with associated de-identified clinical information without moving primary imaging/clinical or imaging data from its local or regional site of origin. Rather, ELIC uses a cloud-based infrastructure to distribute analysis tools to the local site of the stored imaging and clinical data, thereby allowing for research and quality studies to proceed in a vendor-neutral, collaborative environment. ELIC's hub-and-spoke architecture will be deployed to permit analysis of CT images and associated data in a secure environment, without any requirement to reveal the data itself (ie, privacy protecting). Identifiable data remain under local control, so the resulting environment complies with national regulations and mitigates against privacy or data disclosure risk.ResultsThe goal of pilot experiments is to connect image collections of LDCT scans that can be accurately analyzed in a fashion to support a global network using methodologies that can be readily scaled to accrued databases of sufficient size to develop and validate robust quantitative imaging tools.ConclusionThis initiative can rapidly accelerate improvements to the multidisciplinary management of early, curable lung cancer and other major thoracic diseases (eg, coronary artery disease and chronic obstructive pulmonary disease) visualized on a screening LDCT scan. The addition of a facile, quantitative CT scanner image quality conformance process is a unique step toward improving the reliability of clinical decision support with CT screening worldwide

    Assessment of Radiologist Performance in the Detection of Lung Nodules

    Get PDF
    RATIONALE AND OBJECTIVES: Studies that evaluate the lung-nodule-detection performance of radiologists or computerized methods depend on an initial inventory of the nodules within the thoracic images (the “truth”). The purpose of this study was to analyze (1) variability in the “truth” defined by different combinations of experienced thoracic radiologists and (2) variability in the performance of other experienced thoracic radiologists based on these definitions of “truth” in the context of lung nodule detection on computed tomography (CT) scans. MATERIALS AND METHODS: Twenty-five thoracic CT scans were reviewed by four thoracic radiologists, who independently marked lesions they considered to be nodules ≥ 3 mm in maximum diameter. Panel “truth” sets of nodules then were derived from the nodules marked by different combinations of two and three of these four radiologists. The nodule-detection performance of the other radiologists was evaluated based on these panel “truth” sets. RESULTS: The number of “true” nodules in the different panel “truth” sets ranged from 15–89 (mean: 49.8±25.6). The mean radiologist nodule-detection sensitivities across radiologists and panel “truth” sets for different panel “truth” conditions ranged from 51.0–83.2%; mean false-positive rates ranged from 0.33–1.39 per case. CONCLUSION: Substantial variability exists across radiologists in the task of lung nodule identification in CT scans. The definition of “truth” on which lung nodule detection studies are based must be carefully considered, since even experienced thoracic radiologists may not perform well when measured against the “truth” established by other experienced thoracic radiologists
    corecore