13 research outputs found

    GEOCHEMICAL CHARACTERISTICS OF TIANMENSHAN COMPOSITE PLUTON, SOUTH CHINA

    Get PDF
    The southern Jiangxi province is located at east Nanling range, which is an important W-Sn metallogenic province of China. The Early Yanshanian Tianmenshan is composed of the main-phase porphyritic biotite granite and the highly differentiated fine-gained biotite granite, intruding in the Lower Cambrian Niujiaohe Formation. The main-phase granite and the late-stage highly differentiated granite emplaced at 152–158 Ma and 152–151 Ma, respectively. The later was in the center of the pluton as a ovalize shape, with a transitional contact with the main-phase granite.The southern Jiangxi province is located at east Nanling range, which is an important W-Sn metallogenic province of China. The Early Yanshanian Tianmenshan is composed of the main-phase porphyritic biotite granite and the highly differentiated fine-gained biotite granite, intruding in the Lower Cambrian Niujiaohe Formation. The main-phase granite and the late-stage highly differentiated granite emplaced at 152–158 Ma and 152–151 Ma, respectively. The later was in the center of the pluton as a ovalize shape, with a transitional contact with the main-phase granite

    lncRNA ZEB1-AS1 Mediates Oxidative Low-Density Lipoprotein-Mediated Endothelial Cells Injury by Post-transcriptional Stabilization of NOD2

    Get PDF
    Oxidized-low density lipoprotein (ox-LDL) can induce injury of endothelial cells, causing atherosclerosis, which is an important initial event in several cardiovascular diseases. Long non-coding RNAs (lncRNAs) have emerged as regulators of diverse biological processes, but their specific biological functions and biochemical mechanisms in ox-LDL-induced endothelial cell injury have not been well investigated. Here, we describe the initial functional analysis of a poorly characterized human lncRNA ZEB1 antisense 1 (ZEB1-AS1). We found that ox-LDL treatment could induce a decreased cell viability and an increased cell apoptosis in endothelial cells, and knockdown of ZEB1-AS1 significantly reversed this effect. Mechanistically, ox-LDL treatment could sequester p53 from binding to ZEB1-AS1 promoter region, causing transcriptional activation and upregulation of ZEB1-AS1. Moreover, enhanced ZEB1-AS1 could upregulate Nucleotide-Binding Oligomerization Domain 2 (NOD2) expression through recruiting leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) to stabilize NOD2 mRNA. Experimental data showed that knockdown of NOD2 or LRPPRC dramatically abrogated the functional role of ZEB1-AS1 in ox-LDL-induced endothelial cell injury. In summary, we demonstrated that lncRNA ZEB1-AS1 regulates the ox-LDL-induced endothelial cell injury via an LRPPRC-dependent mRNA stabilization mechanism. Therefore, ZEB1-AS1 may serve as a multi-potency target to overcome endothelial cell injury, atherosclerosis and other cardiovascular diseases

    GEOCHEMICAL CHARACTERISTICS OF TIANMENSHAN COMPOSITE PLUTON, SOUTH CHINA

    No full text
    The southern Jiangxi province is located at east Nanling range, which is an important W-Sn metallogenic province of China. The Early Yanshanian Tianmenshan is composed of the main-phase porphyritic biotite granite and the highly differentiated fine-gained biotite granite, intruding in the Lower Cambrian Niujiaohe Formation. The main-phase granite and the late-stage highly differentiated granite emplaced at 152–158 Ma and 152–151 Ma, respectively. The later was in the center of the pluton as a ovalize shape, with a transitional contact with the main-phase granite

    Integrating transcriptome and metabolome analyses of the response to cold stress in pumpkin (Cucurbita maxima).

    No full text
    Cucurbita maxima belong to the genus Cucurbita and are of nutritional and economic importance. Physiological activity, transcriptome, and metabolome analyses of leaf samples from the C. maxima inbreding line IL7 treated at 5 °C and 25 °C were performed. Cold stress resulted in a significant increase in the malondialdehyde content, relative electrical conductivity, soluble protein, sugar content, and catalase activity. A total of 5,553 differentially expressed genes were identified, of which 2,871 were up-regulated and 2,682 down-regulated. In addition, the transcription of differentially expressed genes in the plant hormone signal transduction pathway and transcription factor families of AP2/ERF, bHLH, WRKY, MYB, and HSF was activated. Moreover, 114 differentially expressed metabolites were identified by gas chromatography time-of-flight mass spectrometry, particularly through the analysis of carboxylic acids and derivatives, and organooxygen compounds. The demonstration of a series of potential metabolites and corresponding genes highlighted a comprehensive regulatory mechanism. These findings will provide novel insights into the molecular mechanisms associated with the response to cold stress in C. maxima

    Lipids in plant-microbe interactions

    No full text
    Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled Plant Lipid Biology, guest editors Kent Chapman and Ivo Feussner. (C) 2016 Elsevier B.V. All rights reserved

    Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation

    No full text
    Pulsation fluidized bed (PFB) has indisputable advantages for the dry coal beneficiation process. Due to the interaction mechanism between pulsation gas flow and particles is not clear, the regulation of the parameters is still based on empirical method. In this study, the oscillation characteristics of PFB in relation to pressure fluctuations and bubbles motion were studied by both lab experiments and CFD-DEM simulation. Power Spectral Density (PSD) results indicated that dominant frequency of pressure fluctuations was the same as the pulsation frequency of gas flow. In addition, double peaks were clearly formed when the pulsation frequency was set close to the bed natural frequency (about 3.49 Hz). Furthermore, Bubble growth was limited at a moderate frequency (3.49 Hz), but continued to increase at a higher frequency (5.24 Hz). Lab separation experiment also proved that, the pulsation frequency in the middle ranges (especially close to the natural frequency) can significantly improve separation performance. (C) 2021 Elsevier Ltd. All rights reserved
    corecore