212 research outputs found
Recommended from our members
Value clashes, power competition and community trust: why an NGO's earthquake recovery program faltered in rural China
Temporal Variability of Groundwater Chemistry and Relationship with Water-table Fluctuation in the Jianghan Plain, Central China
AbstractSamples were collected every month from 39 monitoring wells over a period of 1 year and three months (from Jan 2013 to Mar 2014) in the Jianghan alluvial plain in the middle reaches of the Yangtze river, central China, to evaluate the temporal variability of groundwater composition for As and other constituents. The concentrations of K,Na,Ca,Mg in groundwater generally varied less than 30%, whereas concentrations of the redox-sensitive components (Fe,NH4-N,S and As) varied greater over time. In wells tapping the confined aquifers with depth of 25m, concentrations of groundwater As were much higher and ranged up to760 ±320μg/L seasonally. Higher As concentration were associated with an increasing percentage of As(III) in rainy season and a decrease towards the end of dry season, indicating a reductive mobilization responding to groundwater level fluctuation
Synthesis of Cubic Phase-Co Microspheres by Mechanical Solid-State Reaction-Thermal Decomposition and Research on Its Growth Kinetics
Cubic phase cobalt (Co), which can be used as a key component for composite materials given its excellent ductility and internal structure, is not easy to obtain at room temperature. In this study, oxalic acid and cobalt nitrate are used as raw materials to synthesize the cobalt oxalate precursor, which has a stable structure with a five-membered chelate ring. Cobalt oxalate microspheres, having a high internal energy content, were prepared by using mechanical solid-state reaction in the presence of a surfactant, which can produce spherical micelles. The thermal decomposition of the precursor was carried out by maintaining it in a nitrogen atmosphere at 450°C for 3 h. At the end of the procedure, 100 nm cubic phase-Co microspheres, stable at room temperature, were obtained. Isothermal and nonisothermal kinetic mechanisms of cobalt grain growth were investigated. The cubic-Co grain growth activation energy, Q, was calculated in this study to be 71.47 kJ/mol. The required reaction temperature was low, making the production process simple and suitable for industrial applications
Mycoplasma genitalium Lipoproteins Induce Human Monocytic Cell Expression of Proinflammatory Cytokines and Apoptosis by Activating Nuclear Factor κB
This study was designed to investigate the molecular mechanisms responsible for the induction of proinflammatory cytokines gene expression and apoptosis in human monocytic cell line THP-1 stimulated by lipoproteins (LPs) prepared from Mycoplasma genitalium. Cultured cells were stimulated with M. genitalium LP to analyze the production of proinflammatory cytokines and expression of their mRNA by ELISA and RT-PCR, respectively. Cell apoptosis was also detected by Annexin V-FITC-propidium iodide (PI) staining and acridine orange (AO)-ethidium bromide (EB) staining. The DNA-binding activity of nuclear factor-κB (NF-κB) was assessed by electrophoretic mobility shift assay (EMSA). Results showed that LP stimulated THP-1 cells to produce tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in a dose-dependent manner. The mRNA levels were also upregulated in response to LP stimulation. LPs were also found to increase the DNA-binding activity of NF-κB, a possible mechanism for the induction of cytokine mRNA expression and the cell apoptosis. These effects were abrogated by PDTC, an inhibitor of NF-κB. Our results indicate that M. genitalium-derived LP may be an important etiological factor of certain diseases due to the ability of LP to produce proinflammatory cytokines and induction of apoptosis, which is probably mediated through the activation of NF-κB
: Multi-parameter Benchmark Datasets for Elastic Full Waveform Inversion of Geophysical Properties
Elastic geophysical properties (such as P- and S-wave velocities) are of
great importance to various subsurface applications like CO sequestration
and energy exploration (e.g., hydrogen and geothermal). Elastic full waveform
inversion (FWI) is widely applied for characterizing reservoir properties. In
this paper, we introduce , a comprehensive benchmark
dataset that is specifically designed for elastic FWI.
encompasses 8 distinct datasets that cover diverse
subsurface geologic structures (flat, curve, faults, etc). The benchmark
results produced by three different deep learning methods are provided. In
contrast to our previously presented dataset (pressure recordings) for acoustic
FWI (referred to as OpenFWI), the seismic dataset in
has both vertical and horizontal components.
Moreover, the velocity maps in incorporate both P-
and S-wave velocities. While the multicomponent data and the added S-wave
velocity make the data more realistic, more challenges are introduced regarding
the convergence and computational cost of the inversion. We conduct
comprehensive numerical experiments to explore the relationship between P-wave
and S-wave velocities in seismic data. The relation between P- and S-wave
velocities provides crucial insights into the subsurface properties such as
lithology, porosity, fluid content, etc. We anticipate that
will facilitate future research on multiparameter
inversions and stimulate endeavors in several critical research topics of
carbon-zero and new energy exploration. All datasets, codes and relevant
information can be accessed through our website at https://efwi-lanl.github.io/Comment: 20 pages, 11 figure
Relational Repression in China: Using Social Ties to Demobilize Protesters
Chinese local officials frequently employ relational repression to demobilize protesters. When popular action occurs, they investigate activists' social ties, locate individuals who might be willing to help stop the protest, assemble a work team and dispatch it to conduct thought work. Work team members are then expected to use their personal influence to persuade relatives, friends and fellow townspeople to stand down. Those who fail are subject to punishment, including suspension of salary, removal from office and prosecution. Relational repression sometimes works. When local authorities have considerable say over work team members and bonds with protesters are strong, relational repression can help demobilize protesters and halt popular action. Even if relational repression does not end a protest entirely, it can limit its length and scope by reducing tension at times of high strain and providing a channel for negotiation. Often, however, as in a 2005 environmental protest in Zhejiang, insufficiently tight ties and limited concern about consequences creates a commitment deficit, partly because thought workers recognize their ineffectiveness with many protesters and partly because they anticipate little or no punishment for failing to demobilize anyone other than a close relative. The practice and effectiveness of relational, soft repression in China casts light on how social ties can demobilize as well as mobilize contention and ways in which state and social power can be combined to serve state ends. © The China Quarterly, 2013
Potential Novel Prediction of TMJ-OA: MiR-140-5p Regulates Inflammation Through Smad/TGF-β Signaling
Temporomandibular joint osteoarthritis (TMJ-OA), mainly exhibit extracellular matrix loss and condylar cartilage degradation, is the most common chronic and degenerative maxillofacial osteoarthritis; however, no efficient therapy for TMJ-OA exists due to the poor understanding of its pathological progression. MicroRNA (miR)-140-5p is a novel non-coding microRNAs (miRNAs) that expressed in osteoarthritis specifically. To investigate the molecular mechanisms of miR-140-5p in TMJ-OA, primary mandibular condylar chondrocytes (MCCs) from C57BL/6N mice were treated with interleukins (IL)-1β or transfected with miR-140-5p mimics or inhibitors, respectively. The expression of matrix metallopeptidase (MMP)-13, miR-140-5p, nuclear factor (NF)-kB, Smad3 and transforming growth factor (TGF)-β3 were examined by western blotting or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The interaction between the potential binding sequence of miR-140-5p and the 3′-untranslated region (3′UTR) of Smad3 mRNA was testified by dual-luciferase assay. Small Interfering RNA of Smad3 (Si-Smad3) was utilized to further identify the role of Smad3 mediated by miR-140-5p. The data showed MMP13, miR-140-5p and NF-kB increased significantly in response to IL-1β inflammatory response in MCCs, meanwhile, Smad3 and TGF-β3 reduced markedly. Moreover, transfection of miR-140-5p mimics significantly suppressed the expression of Smad3 and TGF-β3 in MCCs, while miR-140-5p inhibitors acted in a converse manner. As the luciferase reporter of Smad3 mRNA observed active interaction with miR-140-5p, Smad3 was identified as a direct target of miR-140-5p. Additionally, the expression of TGF-β3 was regulated upon the activation of Smad3. Together, these data suggested that miR-140-5p may play a role in regulating mandibular condylar cartilage homeostasis and potentially serve as a novel prognostic factor of TMJ-OA-like pathology
Lactic acid bacteria with a strong antioxidant function isolated from “Jiangshui,” pickles, and feces
Excessive free radicals and iron death lead to oxidative damage, which is one of the main causes of aging and diseases. In this field of antioxidation, developing new, safe, and efficient antioxidants is the main research focus. Lactic acid bacteria (LAB) are natural antioxidants with good antioxidant activity and can regulate gastrointestinal microecological balance and immunity. In this study, 15 LAB strains from fermented foods (“Jiangshui” and pickles) or feces were evaluated in terms of their antioxidant attributes. Strains with strong antioxidant capacity were preliminarily screened by the following tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, superoxide anion radical scavenging capacity; ferrous ion chelating assay; hydrogen peroxide tolerance capacity. Then, the adhesion of the screened strains to the intestinal tract was examined using hydrophobic and auto-aggregation tests. The safety of the strains was analyzed based on their minimum inhibitory concentration and hemolysis, and 16S rRNA was used for molecular biological identification. Antimicrobial activity tests showed them probiotic function. The cell-free supernatant of selected strains were used to explore the protective effect against oxidative damage cells. The scavenging rate of DPPH, hydroxyl radicals, and ferrous ion-chelating of 15 strains ranged from 28.81–82.75%, 6.54–68.52%, and 9.46–17.92%, respectively, the scavenging superoxide anion scavenging activity all exceeded 10%. According to all the antioxidant-related tests, strains possessing high antioxidant activities J2-4, J2-5, J2-9, YP-1, and W-4 were screened, these five strains demonstrated tolerance to 2 mM hydrogen peroxide. J2-4, J2-5, and J2-9 were Lactobacillus fermentans and γ-hemolytic (non-hemolytic). YP-1 and W-4 were Lactobacillus paracasei and α-hemolytic (grass-green hemolytic). Although L. paracasei has been proven as a safe probiotic without hemolytic characteristics, the hemolytic characteristics of YP-1 and W-4 should be further studied. Due to the weak hydrophobicity and antimicrobial activity of J2-4, finally, we selected J2-5, J2-9 for cell experiment, J2-5 and J2-9 showed an excellent ability that resistant to oxidative damage by increasing SOD, CAT, T-AOC activity of 293T cells. Therefore, J2-5, and J2-9 strains from fermented foods “Jiangshui” could be used as potential antioxidants for functional food, health care, and skincare
SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner
As one of the most common post-transcriptional modifications of mRNAs and noncoding RNAs, N6-methyladenosine (m6A) modification regulates almost every aspect of RNA metabolism. Evidence indicates that dysregulation of m6A modification and associated proteins contributes to glioblastoma (GBM) progression. However, the function of fat mass and obesity-associated protein (FTO), an m6A demethylase, has not been systematically and comprehensively explored in GBM. Here, we found that decreased FTO expression in clinical specimens correlated with higher glioma grades and poorer clinical outcomes. Functionally, FTO inhibited growth and invasion in GBM cells in vitro and in vivo. Mechanistically, FTO regulated the m6A modification of primary microRNA-10a (pri-miR-10a), which could be recognized by reader HNRNPA2B1, recruiting the microRNA microprocessor complex protein DGCR8 and mediating pri-miR-10a processing. Furthermore, the transcriptional activity of FTO was inhibited by the transcription factor SPI1, which could be specifically disrupted by the SPI1 inhibitor DB2313. Treatment with this inhibitor restored endogenous FTO expression and decreased GBM tumor burden, suggesting that FTO may serve as a novel prognostic indicator and therapeutic molecular target of GBM.publishedVersio
- …