60 research outputs found

    Morphological and Morphogenetic Redescriptions and SSU rRNA Gene-based Phylogeny of the Poorly-known Species Euplotes amieti Dragesco, 1970 (Ciliophora, Euplotida)

    Get PDF
    This paper investigates the morphology and morphogenesis during binary fission of a Chinese population of Euplotes amieti Dragesco, 1970, a fresh water form which has previously not been well defined. This organism is morphologically very similar to the well-known Euplotes eurystomus but differs from the latter both in the number of dorsal kineties and the molecular data. According to the information obtained, it is characterized by a combination of features including nine frontoventral cirri, ca. 60 membranelles, 12–15 dorsal kineties, a macronucleus in the shape of the number 3, and a ‘double-eurystomus’ type of silverline system. Its morphogenesis proceeds broadly in the same pattern as in its congeners. In this study, the SSU rRNA gene was sequenced for the first time, and phylogenetic analyses indicated that it is closely related to the eurystomus-aediculatus-woodruffi- complex. Considering the extreme similarities in morphology between E. amieti and E.eurystomus, we believe that the four sequences (four isolates) under the name of Euplotes eurystomus (No. FR873716; FR873717; EF193250; AJ310491 deposited in GenBank) are very likely from misidentified material; that is, they represent different populations of Euplotes amieti

    The MERS-CoV N Protein Regulates Host Cytokinesis and Protein Translation via Interaction With EF1A

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV), a pathogen causing severe respiratory disease in humans that emerged in June 2012, is a novel beta coronavirus similar to severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, immunoprecipitation and proximity ligation assays revealed that the nucleocapsid (N) protein of MERS-CoV interacted with human translation elongation factor 1A (EF1A), an essential component of the translation system with important roles in protein translation, cytokinesis, and filamentous actin (F-actin) bundling. The C-terminal motif (residues 359–363) of the N protein was the crucial domain involved in this interaction. The interaction between the MERS-CoV N protein and EF1A resulted in cytokinesis inhibition due to the formation of inactive F-actin bundles, as observed in an in vitro actin polymerization assay and in MERS-CoV-infected cells. Furthermore, the translation of a CoV-like reporter mRNA carrying the MERS-CoV 5′UTR was significantly potentiated by the N protein, indicating that a similar process may contribute to EF1A-associated viral protein translation. This study highlights the crucial role of EF1A in MERS-CoV infection and provides new insights into the pathogenesis of coronavirus infections

    A sensor with coating Pt/WO3 powder with an Erbium-doped fiber amplifier to detect the hydrogen concentration

    Get PDF
    A highly sensitive hydrogen sensor coated with Pt/WO3 powder with an Erbium-doped fibre amplifier (EDFA) is proposed and experimentally demonstrated. The sensing head is constructed by splicing a short section of tapered small diameter coreless fiber (TSDCF diameter of 62.5 μm, and tapered to 14.5 μm) between two single-mode fibres. The Pt/WO3 powder adheres to the surface of PDMS film coated on the TSDCF structure, which is sensitive to hydrogen. An EDFA is introduced into the sensor system to improve the quality factor of the output spectrum and thus improve the sensor’s resolution. As the hydrogen concentration varies from 0 to 1.44, the measured maximum light intensity variation and the sensor’s sensitivity are -32.41 dB and -21.25 dB/, respectively. The sensor demonstrates good stability with the light intensity fluctuation of < 1.26 dB over a 30-minute duration

    Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis

    Get PDF
    BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals

    Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies.

    Get PDF
    The health effects of omega-3 fatty acids have been controversial. Here we report the results of a de novo pooled analysis conducted with data from 17 prospective cohort studies examining the associations between blood omega-3 fatty acid levels and risk for all-cause mortality. Over a median of 16 years of follow-up, 15,720 deaths occurred among 42,466 individuals. We found that, after multivariable adjustment for relevant risk factors, risk for death from all causes was significantly lower (by 15-18%, at least p < 0.003) in the highest vs the lowest quintile for circulating long chain (20-22 carbon) omega-3 fatty acids (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids). Similar relationships were seen for death from cardiovascular disease, cancer and other causes. No associations were seen with the 18-carbon omega-3, alpha-linolenic acid. These findings suggest that higher circulating levels of marine n-3 PUFA are associated with a lower risk of premature death.The EPIC Norfolk study (DOI 10.22025/2019.10.105.00004) has received funding from the Medical Research Council (MR/N003284/1 and MC-UU_12015/1) and Cancer Research UK (C864/A14136). NJW, NGF, and FI were supported by the Medical Research Council Epidemiology Unit core funding [MC_UU_12015/1 and MC_UU_12015/5]. NJW and NGF acknowledge support from the National Institute for Health Research Cambridge Biomedical Research Centre [IS-BRC-1215-20014] and NJW is an NIHR Senior Investigator

    Water Resources and Environment (Proceedings of ICGRHWE held at the Three Gorges Dam

    No full text
    Abstract The Yellow River is the second largest river in China. There are seven reservoirs and hydropower stations in the mainstream of the Upper Yellow River. This paper presents an optimal mathematical model for the integrated operation ofthe seven reservoirs and hydropower stations. The objective of this model is to maximize the sum of electricity generated by all the hydropower stations with the constraint of firm power, and the Discrete Differential Dynamic Programming (DDDP) is employed to find the optimal solution of this model. The decision variables of DDDP are chosen as the resetvoir discharge, while the state variables are reservoir storages, and the backward recursive equation is derived to find the reservoir optimal operation policies stage by stage. This model is used to find the integrated optimal operation policies of the past 33 years with obseived hydrological data, the results show that there has been a 5.89% increase in the average annual electricity generated by all the seven hydropower stations. This implies that the model presented in this paper is good and can be used to derive the integrated operating rules of the reservoirs in the Yellow River

    A Low Leakage Autonomous Data Retention Flip-Flop with Power Gating Technique

    No full text
    With the scaling of technology process, leakage power becomes an increasing portion of total power. Power gating technology is an effective method to suppress the leakage power in VLSI design. When the power gating technique is applied in sequential circuits, such as flip-flops and latches, the data retention is necessary to store the circuit states. A low leakage autonomous data retention flip-flop (ADR-FF) is proposed in this paper. Two high-Vth transistors are utilized to reduce the leakage power consumption in the sleep mode. The data retention cell is composed of a pair of always powered cross-coupled inverters in the slave latch. No extra control signals and complex operations are needed for controlling the data retention and restoration. The data retention flip-flops are simulated with NCSU 45 nm technology. The postlayout simulation results show that the leakage power of the ADR-FF reduces 51.39% compared with the Mutoh-FF. The active power of the ADR-FF is almost equal to other data retention flip-flops. The average state mode transition time of ADR-FF decreases 55.98%, 51.35%, and 21.07% as compared with Mutoh-FF, Balloon-FF, and Memory-TG-FF, respectively. Furthermore, the area overhead of ADR-FF is smaller than other data retention flip-flops

    RbpA relaxes promoter selectivity of M. tuberculosis RNA polymerase

    No full text
    International audienceThe transcriptional activator RbpA associates with Mycobacterium tuberculosis RNA polymerase (MtbRNAP) during transcription initiation, and stimulates formation of the MtbRNAP-promoter open complex (RPo). Here, we explored the influence of promoter motifs on RbpA-mediated activation of MtbRNAP containing the stress-response σB subunit. We show that both the 'extended -10' promoter motif (T-17G-16T-15G-14) and RbpA stabilized RPo and allowed promoter opening at suboptimal temperatures. Furthermore, in the presence of the T-17G-16T-15G-14 motif, RbpA was dispensable for RNA synthesis initiation, while exerting a stabilization effect on RPo. On the other hand, RbpA compensated for the lack of sequence-specific interactions of domains 3 and 4 of σB with the extended -10 and the -35 motifs, respectively. Mutations of the positively charged residues K73, K74 and R79 in RbpA basic linker (BL) had little effect on RPo formation, but affected MtbRNAP capacity for de novo transcription initiation. We propose that RbpA stimulates transcription by strengthening the non-specific interaction of the σ subunit with promoter DNA upstream of the -10 element, and by indirectly optimizing MtbRNAP interaction with initiation substrates. Consequently, RbpA renders MtbRNAP promiscuous in promoter selection, thus compensating for the weak conservation of the -35 motif in mycobacteria
    • …
    corecore