667 research outputs found

    Impact of Credit Default Swaps on Firms’ Operational Efficiency

    Get PDF
    As one of the most important financial innovations in the last two decades, credit default swap (CDS) contracts have been initiated and actively traded in the market to hedge against credit risks. However, little is known about how these financial innovations affect an underlying firm’s operations. In this empirical study, we find that an underlying firm’s operational efficiency is significantly improved with the inception of CDS trading. Our results are robust to multiple causal identification strategies. Further analysis suggests that the inception of CDS tends to enhance the operational efficiency of a firm through the supply chain financing capability and trade credit. We also postulate that CDS leads to enhanced efficiency through institutional monitoring and improvements in management effectiveness. We then obtain suggestive evidence. Our findings have direct implications concerning the ongoing policy debate surrounding CDS. We contribute to operations management research by exploring how innovations in the financial market would, in turn, affect the operational performance of firms

    Some Differential Inequalities on Time Scales and Their Applications to Feedback Control Systems

    Get PDF
    This paper deals with feedback control systems on time scales. Firstly, we generalize the semicycle concept to time scales and then establish some differential inequalities on time scales. Secondly, as applications of these inequalities, we study the uniform ultimate boundedness of solutions of these systems. We give a new method to investigate the permanence of ecosystem on time scales. And some known results have been generalized. Finally, an example is given to support the result

    Fault diagnosis of a mixed-flow pump under cavitation condition based on deep learning techniques

    Get PDF
    Deep learning technique is an effective mean of processing complex data that has emerged in recent years, which has been applied to fault diagnosis of a wide range of equipment. In the present study, three types of deep learning techniques, namely, stacked autoencoder (SAE) network, long short term memory (LSTM) network, and convolutional neural network (CNN) are applied to fault diagnosis of a mixed-flow pump under cavitation conditions. Vibration signals of the mixed-flowed pump are collected from experiment measurements, and then employed as input datasets for deep learning networks. The operation status is clarified into normal, minor cavitation, and severe cavitation conditions according to visualized bubble density. The techniques of FFT and dropout algorithms are also applied to improve diagnosis accuracy. The results show that the diagnosis accuracy based on SAE and LSTM networks is lower than 50%, while is higher than 68% when using CNN. The maximum accuracy can reach 87.2% by mean of a combination of CNN, BN, MLP, and using frequency domain data by FFT as inputs, which validates the feasibility of applying CNN in mixed-flow pumps

    A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition

    Get PDF
    An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional state of the brain. As the control signal of the brain-computer interface (BCI), EEG may build a bridge between humans and computers to improve the life quality for patients with movement disorders. The collected EEG signals are extremely susceptible to the contamination of electromyography (EMG) artifacts, affecting their original characteristics. Therefore, EEG denoising is an essential preprocessing step in any BCI system. Previous studies have confirmed that the combination of ensemble empirical mode decomposition (EEMD) and canonical correlation analysis (CCA) can effectively suppress EMG artifacts. However, the time-consuming iterative process of EEMD limits the application of the EEMD-CCA method in real-time monitoring of BCI. Compared with the existing EEMD, the recently proposed signal serialization based EEMD (sEEMD) is a good choice to provide effective signal analysis and fast mode decomposition. In this study, an EMG denoising method based on sEEMD and CCA is discussed. All of the analyses are carried out on semi-simulated data. The results show that, in terms of frequency and amplitude, the intrinsic mode functions (IMFs) decomposed by sEEMD are consistent with the IMFs obtained by EEMD. There is no significant difference in the ability to separate EMG artifacts from EEG signals between the sEEMD-CCA method and the EEMD-CCA method (p > 0.05). Even in the case of heavy contamination (signal-to-noise ratio is less than 2 dB), the relative root mean squared error is about 0.3, and the average correlation coefficient remains above 0.9. The running speed of the sEEMD-CCA method to remove EMG artifacts is significantly improved in comparison with that of EEMD-CCA method (p < 0.05). The running time of the sEEMD-CCA method for three lengths of semi-simulated data is shortened by more than 50%. This indicates that sEEMD-CCA is a promising tool for EMG artifact removal in real-time BCI systems.Fil: Dai, Yangyang. Nankai University; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Sun, Zhe. RIKEN; JapónFil: Zhang, Yu. Lehigh University Bethlehem; Estados UnidosFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Marti Puig, Pere. Central University of Catalonia; EspañaFil: Solé Casals, Jordi. Central University of Catalonia; Españ

    Dietary supplementation of <em>Astragalus</em> fermentation products improves the growth performance, immunological characteristics, and disease resistance of crucian carp (<em>Carassius auratus</em>)

    Get PDF
    The fermentation products of Astragalus have been acknowledged for their ability to enhance immune functions. This study assessed the impact of incorporating Astragalus, fermented with Lactobacillus plantarum and Bacillus coagulans, on crucian carp's growth, disease resistance, and immunological characteristics. The experimental groups were fed with common feed (C), C + Astragalus (A), A + Lactobacillus plantarum (AL), A + Bacillus coagulans (AB), and AL + Bacillus coagulans (ALB). The fermented products were mixed with common feed at a 1:99 ratio, and crucian carp were fed 2% of their body weight for four weeks, with sampling conducted on days 3, 7, 14, 21, and 28. Disease resistance was evaluated using Aeromonas hydrophila (A. hydrophila) at a concentration of 0.2 mL (1.0×10^7 CFU/mL). The final weights in the AL, AB, and ALB groups significantly increased compared to the C group. The ALB group exhibited elevated serum albumin levels, alkaline phosphatase, intestinal lipase, protease enzyme, C3, and IgM gene expression compared to the C group. At the same time, alanine aminotransferase, aspartate aminotransferase, and glucose contents were significantly reduced. The survival rate significantly increased in all experimental groups after treatment with A. hydrophila. In conclusion, Astragalus products fermented with Lactobacillus plantarum and Bacillus coagulans could effectively improve crucian carp's growth, disease resistance, and immune response

    MicroRNA-483 amelioration of experimental pulmonary hypertension.

    Get PDF
    Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses

    Hospitalization of patients with nutritional anemia in the United States in 2020

    Get PDF
    BackgroundNutritional anemia is highly prevalent and has triggered a globally recognized public health concern worldwide.ObjectiveTo better understand the prevalence of anemia and the state of nutritional health in developed countries to inform global nutritional health and better manage the disease.MethodWe employed the Healthcare Cost and Utilization Project (HCUP)-2020 National Inpatient Health Care Data (NIS), administered by The Agency for Healthcare Research and Quality. Nutritional anemia was diagnosed according to the International Classification of Diseases, 10th Revision (ICD-10). Matching analysis and multivariate regression were used to adjust for patient and hospital characteristics. Controls were obtained by stratifying and matching for age and sex.ResultsThe 2020 HCUP-NIS database encompassed a survey over 6.4 million hospitalized patients, among which 1,745,350 patients diagnosed with anemia, representing approximately 26.97% of the hospitalized population, over 310,000 were diagnosed with nutritional anemia, and 13,150 patients were hospitalized for nutritional anemia as primary diagnosis. Hospitalization rate for nutritional anemia exhibited an increased age-dependent increase nationwide, especially among females, who displayed 1.87 times higher than males. Notably, in comparison to the control group, individuals of the Black race exhibit a higher prevalence of nutritional anemia (case group: 21.7%, control group: 13.0%, p &lt; 0.001). In addition, hospitalization rates were higher among low-income populations, with lower rates of private insurance (case group: 18.7%, control group: 23.5%, p &lt; 0.001) and higher rates of Medicaid insurance (case group: 15.4%, control group: 13.9%, p &lt; 0.001). In areas characterized by larger urban centers and advanced economic conditions within the urban–rural distribution, there was an observed increase in the frequency of patient hospitalizations. Iron deficiency anemia emerged as the predominant subtype of nutritional anemia, accounting for 12,214 (92.88%). Secondary diagnosis among patients hospitalized for nutritional anemia revealed that a significant number faced concurrent major conditions like hypertension and renal failure.ConclusionIn economically prosperous areas, greater attention should be given to the health of low-income individuals and the older adult. Our findings hold valuable insights for shaping targeted public health policies to effectively address the prevalence and consequences of nutritional anemia based on a overall population health
    corecore