1,362 research outputs found

    Analysis of radiation-induced bystander effects using high content screening

    Get PDF
    When cells are exposed to (ionising) radiation there is a rapid phosphorylation of a minor nucleosomal histone protein, H2AX, at the sites where double stranded breaks (DSB) occur. This phosphorylation is one of the earliest events in the repair cascade and extends over several mega base pairs surrounding the break. Nowadays it is generally accepted that the formation of ÎłH2AX functions as a signal enhancer. Using immuno histochemistry we can visualise this phosphorylation as foci in the nucleus, where each foci represents a DSB [1]. For our research we use normal human primary fibroblasts (NHDF’s) to study the so called radiation-induced bystander effects which refer to the responses induced in non-irradiated cells, when neighbouring cells are irradiated. Although the exact pathways of transmission are yet to be determined, studies have shown that gap junction-mediated transport and secretion of soluble extracellular factors play an important role [2]. To exclude variation we first tried synchronisation of the fibroblasts using nocodazole or aphidicolin. Our attempts did not produce the desired synchronisation level. In addition, recent reports doubt the effectiveness of these products in cell synchronisation [3]. To resolve this problem, we used high content screening of cells together with specific cell cycle markers. One of these markers is 5-bromo-2-deoxyuridine (BrdU). BrdU, a synthetic nucleoside, is an analogue of thymidine that can be incorporated in replicating cells and specifically label S-phases [4]. Cells are cultured on membrane inserts, with a pore size of 0,4”m allowing soluble factors to pass but preventing the cells to interchange. These cells are irradiated with different doses and subsequently placed together with NHDF that are grown on cover glasses (see figure 1). Depending on the objectives BrdU is added 20-40 minutes before fixation. We found a differential pattern for ÎłH2AX that we could specifically link to the cell cycle. During the S phase ÎłH2AX is significantly more induced than during other phases of the cell cycle (see figure 2). This is probably due to the increased vulnerability caused by the unwinding of DNA during replication. 1. ÂŹÂŹS.H.Macphail, J.P.Banath, T.Y.Yu, E.H.Chu, H.Lambur, P.L.Olive, Int.J.Radiat.Biol. 79 (2003) P. 351-358. 2. H.Yang, N.Asaad, K.D.Held, Oncogene 24 (2005) p. 2096-2103. 3. S.Cooper, G.Iyer, M.Tarquini, P.Bissett, Cell Tissue Res. 324 (2006) p.237-242. 4. R.T.O'Keefe, S.C.Henderson, D.L.Spector, J.Cell Biol. 116 (1992) p.1095-1110

    Adsorption of bisphenol A onto cationic-modified zeolite

    Get PDF

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    Magnetization process of the spin-1/2 XXZ models on square and cubic lattices

    Full text link
    The magnetization process of the spin-1/2 antiferromagnetic XXZ model with Ising-like anisotropy in the ground state is investigated. We show numerically that the Ising-like XXZ models on square and cubic lattices show a first-order phase transition at some critical magnetic field. We estimate the value of the critical field and the magnetization jump on the basis of the Maxwell construction. The magnetization jump in the Ising-limit is investigated by means of perturbation theory. Based on our numerical results, we briefly discuss the phase diagram of the extended Bose-Hubbard model in the hard-core limit.Comment: 13 pages, RevTex, 7 PostScript figures, to appear in Phys.Rev.

    Doping dependent Irreversible Magnetic Properties of Ba(Fe1-xCox)2As2 Single Crystals

    Full text link
    We discuss the irreversible magnetic properties of self-flux grown Ba(Fe1-xCox)2As2 single crystals for a wide range of concentrations covering the whole phase diagram from the underdoped to the overdoped regime, x=0.038, 0.047, 0.058, 0.071, 0.074, 0.10, 0.106 and 0.118. Samples were characterized by a magneto-optical method and show excellent spatial uniformity of the superconducting state. The overall behavior closely follows classical Bean model of the critical state. The field-dependent magnetization exhibits second peak at a temperature and doping - dependent magnetic field, Hp. The evolution of this fishtail feature with doping is discussed. Magnetic relaxation is time-logarithmic and unusually fast. Similar to cuprates, there is an apparent crossover from collective elastic to plastic flux creep above Hp. At high fields, the field dependence of the relaxation rate becomes doping independent. We discuss our results in the framework of the weak collective pinning and show that vortex physics in iron-based pnictide crystals is much closer to high-Tc cuprates than to conventional s-wave (including MgB2) superconductors.Comment: for the special issue of Physica C on iron-based pnictide superconductor

    Numerical Study of the Spin-Flop Transition in Anisotropic Spin-1/2 Antiferromagnets

    Full text link
    Magnetization processes of the spin-1/2 antiferromagnetic XXZXXZ model in two and three spatial dimensions are studied using quantum Monte Carlo method based on stochastic series expansions. Recently developed operator-loop algorithm enables us to show a clear evidence of the first-order phase transition in the presence of an external magnetic field. Phase diagrams of closely related systems, hard core bosons with nearest-neighbor repulsions, are also discussed focusing on possibilities of phase-separated and supersolid phases.Comment: 4 pages, Revtex version 4, with 4 figures embedded, To appear in Phys. Rev.

    Onset of entanglement

    Full text link
    We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional, with two extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to entanglement, and the other a local repulsive term indicative of excluded volume interactions. We show how such a functional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain length between points of entanglement decreases. This crossover is marked by critical slowing down, as the effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we find a corresponding crossover to a regime of high modulus.Comment: 18 pages, with 4 figure

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm

    Get PDF
    International audienceFrequent itemset mining is one of the major data mining issues. Once generated by algorithms, the itemsets can be automatically processed, for instance to extract association rules. They can also be explored with visual tools, in order to analyze the emerging patterns. Graphical itemsets representation is a convenient way to obtain an overview of the global interaction structure. However, when the complexity of the database increases, the network may become unreadable. In this paper, we propose to display itemsets on concentric circles, each one being organized to lower the intricacy of the graph through an optimization process. Thanks to a graph bundling algorithm, we finally obtain a compact representation of a large set of itemsets that is easier to exploit. Colors accumulation and interaction operators facilitate the exploration of the new bundle graph and to illustrate how much an itemset is supported by the data

    Phase Diagram of Bosonic Atoms in Two-Color Superlattices

    Full text link
    We investigate the zero temperature phase diagram of a gas of bosonic atoms in one- and two-color standing-wave lattices in the framework of the Bose-Hubbard model. We first introduce some relevant physical quantities; superfluid fraction, condensate fraction, quasimomentum distribution, and matter-wave interference pattern. We then discuss the relationships between them on the formal level and show that the superfluid fraction, which is the relevant order parameter for the superfluid to Mott-insulator transition, cannot be probed directly via the matter wave interference patterns. The formal considerations are supported by exact numerical solutions of the Bose-Hubbard model for uniform one-dimensional systems. We then map out the phase diagram of bosons in non-uniform lattices. The emphasis is on optical two-color superlattices which exhibit a sinusoidal modulation of the well depth and can be easily realized experimentally. From the study of the superfluid fraction, the energy gap, and other quantities we identify new zero-temperature phases, including a localized and a quasi Bose-glass phase, and discuss prospects for their experimental observation.Comment: 18 pages, 17 figures, using REVTEX
    • 

    corecore