16 research outputs found

    Bifacial p-Type PERC Solar Cell with Efficiency over 22% Using Laser Doped Selective Emitter

    No full text
    In this paper, we report one bifacial p-type PERC solar cell with efficiency over 22% using laser doped selective emitter produced in larger-scale commercial line on 6-inch mono-crystalline wafer. On front side of the solar cell, square resistance of p-n junction was found to be closely related with laser power at certain laser scan speed and frequency. On the other side, the rear fingers with different ratios of height and width and rear silicon nitride (SiNx) layer with different thickness were optimized, and a highest rear efficiency of the bifacial solar cell was obtained. Finally, bifacial silicon solar cells with the front and rear efficiencies exceeding 22% and 15% (AM1.5, 1000 W/m2, 25 °C) were successfully achieved, respectively

    Temperature Effect of Nano-Structure Rebuilding on Removal of DWS mc-Si Marks by Ag/Cu MACE Process and Solar Cell

    No full text
    The absence of an effective texturing technique for diamond-wire sawn multi-crystalline silicon (DWS mc-Si) solar cells has hindered commercial upgrading from traditional multi-wire slurry sawn silicon (MWSS mc-Si) solar cells. In this work, we present a novel method for the removal of diamond-wire-sawn marks in a multi-crystalline silicon wafer based on metal assisted chemical etching process with Cu/Ag dual elements and nano-structure rebuilding (NSR) treatment to make a uniform inverted pyramid textured structure. The temperature effect of NSR solution was systematically analyzed. It was found that the size of the inverted pyramid structure and the reflectance became larger with the increase of the NSR treatment temperature. Furthermore, the prepared unique inverted pyramid structure not only benefited light trapping, but also effectively removed the saw-marks of the wafer at the same time. The highest efficiency of 19.77% was obtained in solar cells with an inverted pyramid structure (edge length of 600 nm) fabricated by NSR treatment at 50 °C for 360 s, while its average reflectance was 16.50% at a 400–900 nm wavelength range
    corecore