1,723 research outputs found

    Hadronic B Decays to Charmed Baryons

    Full text link
    We study exclusive B decays to final states containing a charmed baryon within the pole model framework. Since the strong coupling for ΛbBˉN\Lambda_b\bar B N is larger than that for ΣbBˉN\Sigma_b \bar BN, the two-body charmful decay BΣc0pˉB^-\to\Sigma_c^0\bar p has a rate larger than Bˉ0Λc+pˉ\bar B^0\to\Lambda_c^+\bar p as the former proceeds via the Λb\Lambda_b pole while the latter via the Σb\Sigma_b pole. By the same token, the three-body decay Bˉ0Σc++pˉπ\bar B^0\to\Sigma_c^{++}\bar p\pi^- receives less baryon-pole contribution than BΛc+pˉπB^-\to\Lambda_c^+\bar p\pi^-. However, because the important charmed-meson pole diagrams contribute constructively to the former and destructively to the latter, Σc++pˉπ\Sigma_c^{++}\bar p\pi^- has a rate slightly larger than Λc+pˉπ\Lambda_c^+\bar p\pi^-. It is found that one quarter of the BΛc+pˉπB^-\to \Lambda_c^+\bar p\pi^- rate comes from the resonant contributions. We discuss the decays Bˉ0Σc0pˉπ+\bar B^0\to\Sigma_c^0\bar p\pi^+ and BΣc0pˉπ0B^-\to\Sigma_c^0\bar p\pi^0 and stress that they are not color suppressed even though they can only proceed via an internal W emission.Comment: 25 pages, 6 figure

    Splenic CD8(+) T cells secrete TGF-beta 1 to exert suppression in mice with anterior chamber-associated immune deviation

    Get PDF
    Background CD8(+) regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The mechanisms of suppression by CD8(+) T cells in ACAID remain only poorly understood. TGF-beta 1 is considered as an inhibitory cytokine for immunosuppression in some models. The production of TGF-beta 1 by CD8(+) T cells in ACAID, and whether CD8+ T cells exert suppression through TGF-beta 1, is unknown. Methods The suppressive effect of CD8(+) T cells in ACAID mice was determined by a local adoptive transfer (LAT) assay. The production of TGF-beta 1 by CD8(+) T cells was measured by enzyme-linked immunosorbent assay (ELISA). Anti-TGF-beta 1 antibodies were used in the LAT assay to test if they could block the inhibitory effect of CD8(+) T cells. Results CD8(+) T cells from ACAID mice were shown to block the delayed-type hypersensitivity (DTH) response in an antigen-specific manner in a LAT assay. These CD8+ T cells secreted TGF-beta 1, and their suppression could partially be blocked by anti-TGF-beta 1 antibodies. Conclusions Our study confirms that CD8+ T cells from ACAID mice possess inhibitory properties. This population exerts part of its suppressive function via the production of TGF-beta 1

    Asymmetry Parameter of the K1(1270,1400)K_{1} (1270, 1400) by Analyzing the BK1ννˉB\to K_{1}\nu \bar{\nu} Transition Form Factors within QCD

    Full text link
    Separating the mixture of the K1(1270) K_{1}(1270) and K1(1400)K_{1}(1400) states, the BK1(1270,1400)ννˉB\to K_{1}(1270, 1400)\nu\bar{\nu} transition form factors are calculated in the three-point QCD sum rules approach. The longitudinal, transverse and total decay widths as well as the asymmetry parameter, characterizing the polarization of the axial K1(1270,1400)K_{1}(1270, 1400) and the branching ratio for these decays are evaluated.Comment: 25 pages, 3 figures, 3 table

    Nonleptonic Weak Decays of Bottom Baryons

    Full text link
    Cabibbo-allowed two-body hadronic weak decays of bottom baryons are analyzed. Contrary to the charmed baryon sector, many channels of bottom baryon decays proceed only through the external or internal W-emission diagrams. Moreover, W-exchange is likely to be suppressed in the bottom baryon sector. Consequently, the factorization approach suffices to describe most of the Cabibbo-allowed bottom baryon decays. We use the nonrelativistic quark model to evaluate heavy-to-heavy and heavy-to-light baryon form factors at zero recoil. When applied to the heavy quark limit, the quark model results do satisfy all the constraints imposed by heavy quark symmetry. The decay rates and up-down asymmetries for bottom baryons decaying into (1/2)++P(V)(1/2)^++P(V) and (3/2)++P(V)(3/2)^++P(V) are calculated. It is found that the up-down asymmetry is negative except for Ωb(1/2)++P(V)\Omega_b \to (1/2)^++P(V) decay and for decay modes with ψ\psi' in the final state. The prediction B(ΛbJ/ψΛ)=1.6×104B(\Lambda_b \to J/\psi\Lambda)=1.6 \times 10^{-4} for Vcb=0.038|V_{cb}|=0.038 is consistent with the recent CDF measurement. We also present estimates for Ωc(3/2)++P(V)\Omega_c \to (3/2)^++P(V) decays and compare with various model calculations.Comment: 24 pages, to appear in Phys. Rev. Uncertainties with form factor q^2 dependence are discusse

    Impact of Subleading Corrections on Hadronic B Decays

    Full text link
    We study the subleading corrections originating from the 3-parton (q\bar q g) Fock states of final-state mesons in B decays. The corrections could give significant contributions to decays involving an \omega or \eta^{(\prime)} in the final states. Our results indicate the similarity of \omega K and \omega \pi^- rates, of order 5\times 10^{-6}, consistent with the recent measurements. We obtain a_2(B\to J/\psi K)\approx 0.27+0.05i, in good agreement with data. Without resorting to the unknown singlet annihilation effects, 3-parton Fock state contributions can enhance the branching ratios of K\eta' to the level above 50\times 10^{-6}.Comment: 5 pages, 5 figures, revtex4; some typos corrected, a new figure and a reference added, more explanations for the calculation provided, to appear in Phys. Rev.

    Retinal S-antigen Th1 cell epitope mapping in patients with Behcet's disease

    Get PDF
    Background - Retinal S-antigen (S-Ag) is a most characterized autoantigen of autoimmune uveitis. The recognized immunodominant epitope of human S-Ag in patients with uveitis has not been identified. In this study, we selected certain patients with active uveitis to map the Th1 cell epitope spectrum of human S-Ag in Behcet's disease(BD). Methods - Blood samples were taken from eight active BD patients who showed an immune response to 40 mixed overlapping peptides spanning the entire sequence of human S-Ag. Peripheral blood mononuclear cells were isolated and stimulated with single S-Ag peptide at 5 mu g/ml or 20 mu g/ml. Single-cell immune responses were measured by IFN-gamma ELIspot assay. Results - BD patients heterogeneously responded to the S-Ag peptides at two concentrations. In general, the responses to 5 mu g/ml peptides were slightly stronger than those to 20 mu g/ml peptides, while the maximum SFC frequency to single peptide at the two concentrations was similar. Several peptides including P31, P35 and P40 induced a prominent response, with the frequency of S-Ag specific cells being about 0.007%. Significant reactivity pattern shift was noted in patients with different disease courses. Conclusions - Certain active BD patients have S-Ag specific Th1 cells with a low frequency. The S-Ag epitope specificity between patients is highly heterogeneous, and varies with the uveitis cours

    Study on steady-state thermal conduction with singularities in multi-material composites

    Get PDF
    Increasing demand in material and mechanical properties has led to production of complex composite structures. The composite structures, made of different materials, possess a variety of properties derived from each material. This has brought challenges in both analytical and numerical studies in thermal conduction which is of significant importance for thermoelastic problems. Therefore, a unified and effective approach would be desirable. The present study makes a first attempt to determining the analytical symplectic eigen solution for steady-state thermal conduction problem of multi-material crack. Based on the obtained symplectic eigen solution (including higher order expanding eigen solution terms), a new symplectic analytical singular element (SASE) for numerical modeling is constructed. It is concluded that composite structures composed of multi-material with complex geometric shapes can be modeled by the developed method, and the generalized flux intensity factors (GFIFs) can be solved accurately and efficiently

    Charmless Exclusive Baryonic B Decays

    Full text link
    We present a systematical study of two-body and three-body charmless baryonic B decays. Branching ratios for two-body modes are in general very small, typically less than 10610^{-6}, except that \B(B^-\to p \bar\Delta^{--})\sim 1\times 10^{-6}. In general, BˉNΔˉ>BˉNNˉ\bar B\to N\bar\Delta>\bar B\to N\bar N due to the large coupling constant for ΣbBΔ\Sigma_b\to B\Delta. For three-body modes we focus on octet baryon final states. The leading three-dominated modes are Bˉ0pnˉπ(ρ),npˉπ+(ρ+)\bar B^0\to p\bar n\pi^-(\rho^-), n\bar p\pi^+(\rho^+) with a branching ratio of order 3×1063\times 10^{-6} for Bˉ0pnˉπ\bar B^0\to p\bar n\pi^- and 8×1068\times 10^{-6} for Bˉ0pnˉρ\bar B^0\to p\bar n\rho^-. The penguin-dominated decays with strangeness in the meson, e.g., BppˉK()B^-\to p\bar p K^{-(*)} and Bˉ0pnˉK(),nnˉKˉ0()\bar B^0\to p\bar n K^{-(*)}, n\bar n \bar K^{0(*)}, have appreciable rates and the NNˉN\bar N mass spectrum peaks at low mass. The penguin-dominated modes containing a strange baryon, e.g., Bˉ0Σ0pˉπ+,Σnˉπ+\bar B^0\to \Sigma^0\bar p\pi^+, \Sigma^-\bar n\pi^+, have branching ratios of order (14)×106(1\sim 4)\times 10^{-6}. In contrast, the decay rate of Bˉ0Λpˉπ+\bar B^0\to\Lambda\bar p\pi^+ is smaller. We explain why some of charmless three-body final states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their two-body counterparts: either the pole diagrams for the former have an anti-triplet bottom baryon intermediate state, which has a large coupling to the BB meson and the nucleon, or they are dominated by the factorizable external WW-emission process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are: (i) Calculations of two-body baryonic B decays involving a Delta resonance are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are discusse

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of BD()(π,ρ)B\to D^{(*)}(\pi,\rho), BD()Ds()B\to D^{(*)} D_s^{(*)}, BJ/ψK()B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from BD()Ds()B\to D^{(*)}D_s^{(*)} and a_2 from BJ/ψK()B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes BD()hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of BD()νˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from BJ/ψK()B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BKA_{1,2}^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψKJ/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that BK()B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)1.9A1BK(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BKA_2^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in BJ/ψKB\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte
    corecore