288 research outputs found
Equity evaluation of urban park system: a case study of Xiamen, China
Urban parks play a distinctive and important role in satisfying residents’ demands on leisure and recreation, and thus have become the focus of research in the field of urban planning and sustainable development. This paper used equity as indicator to combine both the supply and demand sides of urban park service. Taking Xiamen as the study case, the relationship between spatial distribution of population and park services was analyzed. The results show that while population density has a significant spatial relationship with urban park service level at the city scale, Xiamen has the problem of neglecting the equity of urban park service between people and regions within the city. The proposed approach builds up the linkage between urban park service and urban population in order to evaluate the performance of urban park. Although the mechanism remains to be discussed, this study provides a useful auxiliary tool for constructing a guideline for urban green space planning, since urban park is increasingly seen as a kind of restricted public resource and ensuring its equity should be an important task for city mangers
Inhibition of Glucose-6-Phosphate Dehydrogenase Could Enhance 1,4-Benzoquinone-Induced Oxidative Damage in K562 Cells
Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD) maintains the reduced state of glutathione (GSH). This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ). G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS) level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure
Formula optimization and volatile flavor substance analysis of extruded corn flour composite powder
Objective: This study aimed to improve the flavor and solubility of extruded corn flour by compounding. Methods: D-optimal mixture design was used to add different proportions of puffed millet flour, fried red rice flour, puffed rice flour, and puffed black rice flour, into puffed corn flour. The composite powder was analyzed and evaluated from the perspectives of caking rate, viscosity, sensory score, and volatile flavor substance changes. The aroma components of different samples were analyzed by gas chromatography-mass spectrometry. Results: The formula of compound powder was as follows: expanded corn flour 50.8%, expanded millet flour 8.8%, fried red rice flour 0.5%, expanded rice flour 19.9%, and expanded black rice flour 20.0%. Compared with the single extruded corn flour, the caking rate of the composite powder was reduced to 0.52%, the viscosity was increased to 2 880 mPa·s, the sensory score was 87.84 points, and the blending performance was also significantly improved. The flavor substances in the compounded extruded corn flour, such as a green aroma and a nut aroma was increased. To be noticed, the increasing of aldehydes is the most obvious. Conclusion: The quality of the compounded extruded corn flour was improved, and the volatile flavor substances were increased
Coordination of Supply Chain with a Dominant Retailer under Demand Disruptions
We develop a coordination model of a one-manufacturer multi-retailers supply chain with a dominant retailer. We consider the impact of a dominant retailer on the market retail price and his sales promotion opportunity and examine how the manufacturer can coordinate such a supply chain by revenue-sharing contract after demand disruptions. We address the following important research questions in this paper. (i) How do we design an appropriate revenue-sharing contract to coordinate the supply chain with a dominant retailer without demand disruptions? (ii) When demand is disrupted with variations in market scale and price sensitive coefficient, can the original contract still be valid? (iii) How do the demand disruptions affect the coordination mechanism under different disruption scenarios and how should the new contract change? Finally, we generate important insights by both analytical and numerical examples
GraphGrind: addressing load imbalance of graph partitioning
The incidence of HCAIs before and after antimicrobial stewardship. Incidence of VAP, CRBSI and CAUTI were defined as the number of VAP, CRBSI and CAUTI patients per 1000 ventilation days, per 1000 central venous catheter days and per 1000 urine-catheter days, respectively. (DOCX 15Â kb
Pickering emulsion-enhanced interfacial biocatalysis: tailored alginate microparticles act as particulate emulsifier and enzyme carrier
A robust Pickering emulsion stabilized by lipase-immobilized alginate gel microparticles with a coating of silanized titania nanoparticles is developed for biphasic biocatalysis. The good recyclability and high stability of the proposed interfacial catalysis system have been verified, retaining about 90% of relative enzyme activity in 10 catalytic cycles with operation for 240 h. Meanwhile the Pickering emulsions remain stable during a storage time of one year. The green system can be widely applied to construct powerful platforms for enzyme or microorganism-driven interfacial catalysis
Determination of Phthalates Released from Paper Packaging Materials by Solid-Phase Extraction -High-Performance Liquid Chromatography
A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food
Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae
Ventilator-associated pneumonia (VAP) infection caused by carbapenem-resistant Enterobacteriaceae (CRE) is becoming more prevalent, thus seriously affecting patient outcomes. In this paper, we studied the drug resistance mechanism and epidemiological characteristics of CRE, and analyzed the infection and prognosis factors of VAP caused by CRE, to provide evidence for effective control of nosocomial infection in patients with VAP. A total of 58 non-repetitive CRE strains of VAP were collected from January 2016 to June 2018. To explore the risk factors of CRE infection, 1:2 group case control method was used to select non CRE infection patients at the same period as the control group. Among the 58 CRE strains, the most common isolates included Klebsiella pneumoniae and Escherichia coli. All strains were sensitive to polymyxin B, which features better sensitivity to other antibiotics such as minocycline, trimethoprim/sulfamethoxazole, and amikacin. Multiple drug resistance genes were detected at the same time in most strains. KPC-2 was the most common carbapenemase-resistant gene in Klebsiella pneumoniae, whereas NDM-1 was more common in Escherichia coli. The risk factors correlated with CRE infection included intensive care unit (ICU) occupancy time >7 days (OR = 2.793; 95% CI 1.439~5.421), antibiotic exposure during hospital stay including those to enzyme inhibitors (OR = 1.977; 95% CI 1.025~3.812), carbapenems (OR = 3.268; 95% CI 1.671~6.392), antibiotic combination therapy(OR = 1.951; 95% CI 1.020~3.732), and nerve damage (OR = 3.013; 95% CI 1.278~7.101). Multivariable analysis showed that ICU stay >7 days (OR = 1.867; 95% CI 1.609~20.026), beta-lactamase inhibitor antibiotics (OR = 7.750; 95% CI 2.219~27.071), and carbapenem (OR = 9.143; 95% CI 2.259~37.01) are independent risk factors for VAP carbapenem caused by Carbapenem-resistant Enterobacteriaceae. A high resistance rate of CRE isolated from VAP indicated that the infected patients featured higher mortality and longer hospital stay time than the control group. Multiple risk factors for CRE infection and their control can effectively prevent the spread of VAP
- …