
GraphGrind: addressing load imbalance of graph partitioning

Sun, J., Vandierendonck, H., & Nikolopoulos, D. S. (2017). GraphGrind: addressing load imbalance of graph
partitioning. In Proceedings of the International Conference on Supercomputing [16] DOI:
10.1145/3079079.3079097

Published in:
Proceedings of the International Conference on Supercomputing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© ACM New York 2017.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96662914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/graphgrind-addressing-load-imbalance-of-graph-partitioning(48c97449-0737-43b4-b9b1-9ad04014a6f2).html

GraphGrind: Addressing Load Imbalance of Graph
Partitioning

Jiawen Sun
Queen’s University Belfast
Email: jsun03@qub.ac.uk

Hans Vandierendonck
Queen’s University Belfast

Email: h.vandierendonck@qub.ac.uk

Dimitrios S. Nikolopoulos
Queen’s University Belfast

Email: d.nikolopoulos@qub.ac.uk

Abstract

We investigate how graph partitioning adversely affects the performance of graph analytics. We demonstrate that graph
partitioning induces extra work during graph traversal and that graph partitions have markedly different connectivity than the
original graph. By consequence, increasing the number of partitions reaches a tipping point after which overheads quickly
dominate performance gains. Moreover, we show that the heuristic to balance CPU load between graph partitions by balancing
the number of edges is inappropriate for a range of graph analyses. However, even when it is appropriate, it is sub-optimal
due to the skewed degree distribution of social networks. Based on these observations, we propose GraphGrind, a new graph
analytics system that addresses the limitations incurred by graph partitioning. We moreover propose a NUMA-aware extension
to the Cilk programming language and obtain a scale-free yet NUMA-aware parallel programming environment which underpins
NUMA-aware scheduling in GraphGrind. We demonstrate that GraphGrind outperforms state-of-the-art graph analytics systems
for shared memory including Ligra, Polymer and Galois.

I. INTRODUCTION

Many important problems in social network analysis, artificial intelligence, business analytics and computational sciences
can be solved using graph-structured analysis. There is increasing evidence that large-scale shared-memory machines with
terabyte-scale main memory are well-suited to solve these graph analytics problems as they are characterized by frequent
and fine-grain synchronization [1], [23], [28], [19], [15], [21]. Recently, graph partitioning has been proposed to isolate
memory accesses to specific parts of the graph data. Graph partitioning allows to stage graph data in main memory from
backing disk [15] and allows to direct memory accesses to the locally-attached memory node in Non-Uniform Memory Access
(NUMA) machines [28]. Moreover, graph partitioning is essential in distributed memory systems to spread the computation
evenly across all nodes [9].

Several studies have proposed efficient heuristic partitioning techniques for social network graphs [9], [15], as near-optimal
partitioning is excessively time-consuming. A common approach is to partition the edge set with the aim to place an equal
number of edges in each partition. This results in balanced computation per partition as many graph analyses perform work
proportional to the number of edges [9].

While graph partitioning is a crucial building block for graph analytics, little is known about the various ways in which it
affects performance. This paper analyzes heuristic graph partitioning in detail and identifies side effects that limit achievable
performance. In particular, we show that graph partitioning incurs an innate performance overhead, which stems from increased
control flow and from the decreased connection density of the partitions.

Moreover, we find that partitioning the edge set results in an imbalance in the number of vertices appearing in each partition.
Alternatively, partitioning the vertex set results in an imbalance in the number of edges. Thus, significant load imbalance
exists between partitions, either for loops iterating over vertices, or for loops iterating over edges.

This paper makes the following contributions:
• We analyze the characteristics of graph partitions and identify how these limit performance.
• We present GraphGrind, a NUMA-aware graph analytics framework that reduces the performance impact of graph parti-

tioning. Key highlights of GraphGrind are an improved graph representation, tuning the partitioning to the characteristics
of the algorithm and improving the NUMA memory mapping of key data structures.

• We develop an extension to the Cilk parallel programming language [8], [12] that allows expression of NUMA affinity
for parallel loops. Our extension simplifies the design of GraphGrind and is generally applicable to enforce NUMA-aware
scheduling in parallel programs.

• We experimentally evaluate the performance of GraphGrind on 6 real-world graphs and 3 synthetic graphs. We show
that GraphGrind improves performance by up to 82% over Polymer and up to 326% over Ligra.

The remainder of this paper is organized as follows. Section II introduces the background of graph analytics. Section III
motivates this work through analyzing the adverse impact of graph partitioning. Section IV describes the design and imple-
mentation of GraphGrind, a graph processing system that significantly reduces the overhead and load imbalance of traversing
partitioned graphs. Section V presents an experimental evaluation of GraphGrind. Section VI discusses further related work.

II. BACKGROUND

Graph analytics provide abstract, vertex oriented and/or edge oriented programming models that iteratively calculate a value
associated to a vertex.

0
1

3
24

5

0
1

3
2 4

5
destinations

0 5 5 6 8 9

1 2 3 4 5 4 4 5 5 0 1 2 3 4

indices
CSR format

sources

0 1 3 5 7 11

5 0 5 0 5 0 5 0 2 3 5 0 3 4

indices
CSC format Fig. 1: A graph with skewed degree distribution and its

representation in CSR format.

frontiert

indices

out-edges 1 2 3

1 0 1 0 1

Datat

Datat+1

frontiert+1

v0 v1 v2 v3 v4 v0 v1 v2 v3 v4
update

w4
active

update

SEQ, R, Sh

SEQ, R, Pr

SEQ, R, Pr

SEQ, R, Sh

RND,W, Pr

RND,W, Pr

partition 0 partition 1

0 1

5 6 2 3 0

1

0 3

2 3 4 5 4 4 5 5 4

w5

v5

1 1
active

w0 w1 w2

0 1 1 1

w3

v5

1 0 1 0 1 1

0
1

3
2 4

5

3 3 3 3 2

Fig. 2: Traversal of the graph in Figure 1 partitioned
by destination.

ALGORITHM 1: Partitioning by destination
input : Graph G = (V,E); number of partitions P
output : Graph partitions Gi = (V,Ei) for i = 0, . . . , P − 1

1 avg = |E|/P ; // target edges per partition
2 i = 0;
3 for v : V do
4 if |Ei| >= avg and i < P − 1 then
5 ++i; // i has exceeded target edges
6 Ei = Ei ∪ in-edges(v); // i is home partition of v

A. Graph Representation

The two key data structures are graphs and frontiers. A graph G = (V,E) has a set of vertices V and a set of directed
edges E ⊂ V ×V represented as pairs of end-points. A frontier is a subset of the vertices which are active. Graph algorithms
visit the destination vertices of the active edges ({v ∈ V : (u, v) ∈ E ∧ u ∈ F}) and apply an algorithm-specific function to
update the value computed for v taking into account the current value for u. This operation is repeated until all values have
converged.

Figure 1 illustrates a graph with skewed degree distribution and its representation in the Compressed Sparse Rows (CSR)
format [22]. The CSR format stores two arrays: an edge array with IDs of the destination vertices and an index array storing
for each vertex the index into the edge array where the destinations of its edges are recorded. The index array has length |V |
and the edge array has length |E|.

The Compressed Sparse Columns (CSC) representation is analogous and stores the incoming edges to each vertex as
opposed to the outgoing edges.

B. Edge Traversal

The efficient implementation of graph algorithms is sophisticated and requires deep knowledge of the characteristics of the
algorithms. First, the frontier is a set of vertices and may be implemented either as a bitmap or as an array storing vertex
IDs. The most efficient implementation depends on the density of the frontier [11]. In a dense frontier more edges are active,
while a sparse frontier has few active edges. The threshold is typically set at 5% active edges.

Secondly, edges may be traversed in forward or backward manner. In each case, the goal is to traverse the destination
vertices of active edges. A forward traversal first traverses source vertices u ∈ V and checks if they are active (u ∈ F). If
they are, then their out-going edges are traversed. A backward traversal iterates over destination vertices v ∈ V as well as
their incoming edges (u, v) ∈ E. Only then can it check that the source vertex u is active.

Some algorithms execute faster with forward traversal, while others with backward traversal. The distinction is to a large
extent motivated experimentally [23]. Beamer et al. motivate the distinction by the number of visited edges [2].

The graph representation is designed for efficient forward and backward iteration. Hereto, a dual representation is used for
directed graphs (incoming and out-going edges are equal for undirected graphs), i.e., the graph is stored once in CSC format
and once in CSR format [23].

III. MOTIVATION

A low-overhead algorithm to partition the edge set is listed in Algorithm 1 [15], [28]. The graph is partitioned as Gi = (V,Ei)
where Ei is a partitioning of E: ∪iEi = E and all Ei are non-overlapping. The algorithm assigns each vertex to a home
partition such that (i) each partition is home to a range of subsequent vertex IDs and (ii) an edge (u, v) ∈ E is assigned to
the home partition of v. It follows that Ei ⊂ V ×Vi: each partition only has edges pointing to its own home vertices, but the
sources may be any vertex.

An often-used criterion for balancing CPU load is to equalize the number of edges per partition, as many graph analytic
algorithms perform an amount of work that is proportional to the number of edges. We refer to this partitioning technique as
partitioning by destination as edges are assigned to the home partition of the destination vertex. Alternatively, partitioning by

0
1
2
3
4
5
6
7
8
9

10

2 4 6 8 10 12 14 16

Re
pl

ic
at

io
n

Fa
ct

or

Number of Partitions

Twitter Friendster Orkut
USAroad LiveJournal Powerlaw

Fig. 3: Compressed vertices replication factor varying
partition number

0%

20%

40%

60%

80%

100%

1 2 4 8 16

%
 v

e
rt

ic
e

s
w

it
h

 z
e

ro
 d

e
gr

e
e

Number of Partitions

Twitter Friendster Orkut

USAroad LiveJournal Powerlaw

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7

%
 v

e
rt

ic
e

s
w

it
h

 z
e

ro
 d

e
gr

e
e

Partition Index (Sorted)

Twitter Friendster Orkut

USAroad LiveJournal Powerlaw

Fig. 4: Percentage of vertices with zero out-degree
averaged across all partitions (left) and variation across
each of 8 partitions (right).

source assigns an edge (u, v) to the home partition of u. Both algorithms achieve nearly the same number of edges in each
partition [28].

Figure 2 shows how Algorithm 1 partitions the graph in Figure 1 in two parts. Partition 0 contains 7 edges and is home to
vertices 0, 1, 2 and 3. Partition 1 also contains 7 edges and is home to vertices 4 and 5. Figure 1 furthermore shows how a
single traversal of the graph proceeds, assuming a dense forward traversal. This traversal first checks whether each vertex is
active, i.e., it has a 1 value in the frontier array. This is the case for vertex 0, so it traverses the out-edges of vertex 0 in each
partition in parallel. It computes updated values for the vertices 1, 2 and 3 in partition 0 and for vertices 4 and 5 in partition 1.
It updates the frontier accordingly. Note that each partition updates distinct values as edges with the same destination appear
in the same partition.

A. Extra Work Induced by Partitioning

When partitioning the edge set, the list of edges of a vertex is split with parts of the list appearing in different partitions.
As such, the edges for some vertices are stored in distinct partitions. Graph traversal must thus visit the vertex once for each
replication. The additional cost of this is a small amount of control flow, lookups in the graph representation and checking
whether the vertex is active. While these actions require only a few dozen assembly instructions, it is important to keep in
mind that graph analytics perform little computation, typically less than a dozen assembly instructions per edge. Moreover,
the overhead involves several main memory accesses as these algorithms are memory intensive.

Figure 3 shows the average replication factor of vertices for various degrees of partitioning. The graphs are described
in Section V. We show data for 6 of the 9 graphs as the remaining 3 behave similarly. Graphs with few edges per vertex
(USARoad and Friendster) have the lowest replication factors while highly skewed graphs (Twitter and Orkut) have the highest.
Assuming 4 partitions, replication factors are often in the range 2–3, which implies that the control flow overhead of graph
traversal is repeated 2 to 3 times. This results in an instruction count increase of up to 18%.

Figure 3 moreover shows that the graph partitioning algorithm studied in this paper achieves a comparable replication
factor for the Twitter graph as the more elaborate algorithm in [9]. We may thus assume that the conclusions of this paper
are independent of the partitioning algorithm used, as our conclusions build on the observation that the replication factor is
larger than one.

B. Sparsity of Graph Partitions

If vertices are not replicated across all partitions, then by necessity vertices will not have incoming or out-going edges
in several of the partitions. Figure 4 (left) shows the average number of vertices with zero degree for varying degrees of
partitioning by destination. Similar results hold for partitioning by source. The fraction of vertices with zero out-going edges
shoots up quickly as more partitions are introduced, exceeding in many cases 50% for 4 partitions. Moreover, real-world
social networks have strongly imbalanced partitions (Figure 4 (right)). In contrast, the partitions of synthetic graphs, intended
to model real-world graphs, have equal numbers of unconnected vertices in each partition. Interestingly, the Friendster graph
has fairly equal partitions. The sparsity of graph partitions leads to an opportunity: if we can avoid iterating over the absent
vertices in a partition, then the instruction count increase for these vertices can be restricted only to the partitions where the
vertex occurs. To this end, GraphGrind uses a variation of the CSR representation where zero-degree vertices are not recorded.

C. Balancing Edges vs. Vertices

It is hard to partition a social network graph in a balanced way due to its skewed degree distribution. Figure 5 shows the
relative number of vertices per partition for various graphs and numbers of partitions. Social network graphs like Twitter and
Friendster have highly different numbers of vertices per partition when balancing the number of edges.

The imbalance of the number of vertices per partition has an important impact on performance. First, many graph algorithms
make passes over vertices apart from passes over the edges. As such, the work performed per graph partition is not only
proportional to the number of edges, but also depends on the number of vertices.

Secondly, not all algorithms perform a fixed amount of work per edge. Instead, algorithms such as BFS, betweenness-
centrality, Bellman-Ford and K-Core visit at most one active edge per active vertex. For them, balancing the edges between
partitions does not result in a balanced CPU load.

0%

20%

40%

60%

80%

100%

Tw
itt
er

Fr
ie
nd

st
er

Or
ku
t

US
Ar
oa
d

Li
ve
Jo
ur
na
l

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd

st
er

Or
ku
t

US
Ar
oa
d

Li
ve
Jo
ur
na
l

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd

st
er

Or
ku
t

US
Ar
oa
d

Li
ve
Jo
ur
na
l

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd

st
er

Or
ku
t

US
Ar
oa
d

Li
ve
Jo
ur
na
l

Po
w
er
la
w

2	partitions 4	partitions 8	partitions 16	partitions

%
	V
er
tic

es
	p
er
	P
ar
tit
io
n

Fig. 5: Relative sizes of partitions for varying degree of
partitioning.

Compressed CSR format

destinations

0 3

1 2 3 0 1 2 3

indices

Partition 0 Compressed CSR format

destinations

0 2 3

4 5 4 4 5 5 4

indices

Partition 1

0 5 vertex 0 2 3 4 5 vertex

5 6

Fig. 6: Compressed CSR format.

Thirdly, an imbalance in the number of vertices per partition results in a skewed utilization of memory and creates hotspots
for certain partitions. This unnecessarily drives to scale-out distributed systems to higher degrees of parallelism to drive the
worst-case partition size down, even if the computation does not warrant scaling out. In shared memory systems the memory
imbalance may be combated by storing data in a sub-optimal NUMA node, which results in the lesser evil of remote NUMA
accesses.

Increasing the number of partitions may seem to avoid skewed partitions. This is however not true. As Figure 5 shows,
the presence of highly-connected vertices remains an issue with higher degrees of partitioning as some partitions have twice
as many vertices as others. We conclude that the graph partitioning needs to balance CPU load and should be adapted to
characteristics of the algorithm.

IV. GRAPHGRIND: DESIGN AND IMPLEMENTATION

GraphGrind is a NUMA-aware graph analytics framework that builds on the characteristics of graph partitions to optimise
the memory layout of graphs and to reduce load imbalance. GraphGrind contains all the required features of graph analytics
systems, including hierarchical parallel decomposition of the computation, NUMA-aware data placement and code schedul-
ing [28], balanced vertex-cut partitioning [9] and adapting data structures [11] and search direction [2] to the size of the
frontier. We discuss its key features below.

A. Application Programming Interface

GraphGrind is compatible with the Ligra programming model. It provides two data types: graphs and frontiers. A frontier
is a subset of the vertices in a graph. The key functions apply operations to edges or vertices and calculate new frontiers in
the process. They are defined as follows:

• size(): For a frontier F , size(F) returns |F |.
• The edge-map() operator is the main work-horse. It applies an algorithm-specific function to every active vertex in the

graph. Its arguments are a graph G =(V,E), a frontier F , a function Fn and a condition C. An edge (u, v)∈ E is active
if u ∈ F and C(v)= true. The argument Fwd determines whether a forward or a backward traversal is likely to be faster.
Edge-map returns a new frontier consisting of all visited vertices v for which Fn(u, v) returned a true value.

• vertex-map() applies a function Fn to every vertex in the frontier F . It returns a new frontier consisting of all visited
vertices u for which Fn(u, v) returned a true value.

We extend the programming interface with a cache for backward edge-map traversals. While edge-map may execute in
parallel, it traverses the incoming edges of a vertex sequentially when the number of vertices is not very large (less than
1000). Compilers should, in principle, be able to hold the intermediate updates for the destination vertex’s value in registers.
However, the complexity of control flow and pointer aliasing prohibits this in practice. GraphGrind allows the programmer
to specify how to cache intermediate updates for the function Fn. This explicit notation allows compilers to allocate them
to registers and involves a cache type definition and 3 functions to initialize the cache, to update it and to commit it to the
main state.

B. Frontier Representation

We adapt the representation of frontiers between bitmaps and arrays of vertex IDs on-the-fly, depending on their density [11].
Frontiers are created either by constructors, or by the edge-map and vertex-map functions. From the users point of view,
frontiers are immutable. One of the constructors creates a frontier containing all vertices. We explicitly record this property
in the frontier to omit checks of the frontier and speed up graph traversal. Remember that graph analytics typically perform
little work per edge. As such, any reduction in instruction count has a measurable impact.

This optimization affects traversal with dense frontiers. The backward traversal benefits much more from this optimization
as it performs more lookups in the frontier, namely once per edge vs. once per vertex in the case of the forward traversal.
We similarly optimize the vertex-map operation and any auxiliary loop iterating over the frontier.

C. Compressed Graph Representation

We modify the CSR and CSC representation to combat efficiency issues with zero-degree vertices. We compress the index
array by storing only information for vertices with non-zero degree and store the vertex ID with it. Figure 6 shows the
modified CSR format for the graph partitions of Figure 2. In Partition 0, vertex 0 and 5 have out-edges which are home to

TABLE I: NUMA allocation and binding strategy
Data structure NUMA allocation
full graph interleaved
graph partition allocate on one node
vertex arrays match home partition
Operation NUMA binding
edge-map (sparse) none
edge-map (dense) bind to holding node
vertex-oriented loops
(e.g., vertex-map)

equally distribute loop iterations over
NUMA nodes

0-3

0 1

0-1

2 3

2-3

0-3

0 1

0-1

2 3

2-3

 thread @1
steals from
thread @2

thread @2
 initiates loop

thread @3
 steals from
 thread @2

thread @0
steals from
thread @1

0-3

0 1

0-1

2 3

2-3

 thread @1
steals from
thread @2

thread @2
 initiates loop 0-3

0 1

0-1

2 3

2-3

thread A
thread B

(a) Cilk spawn tree (b) Cilk work-first (depth-
 first) execution

(c) NUMA-aware execution
 order for threads 1 and 2

(d) NUMA-aware execution order with
 four threads

Fig. 7: NUMA-aware work-stealing. “Thread @n” represents any thread executing on socket “n”.

vertex 0, 1, 2 and 3. In Partition 1, only vertex 1 has zero degree, so it is not stored. The representation reduces the size of
the index array due to the high number of zero-degree vertices. The main benefit, however, is that a sequential edge traversal
becomes more efficient as iteration over the index array automatically skips all zero degree vertices.

GraphGrind stores each graph partition in the CSR and CSC representations in order to support the direction-reversing
technique. I.e., a dense forward traversal uses CSR while a dense backward traversal uses CSC. This representation is,
however, not efficient for traversals with sparse frontiers as these are dominated by control flow, which is aggravated by the
replication of vertices. As such, we store a non-partitioned copy of the original CSR representation of the graph specifically
for sparse traversals. As such, GraphGrind stores three copies of the graph for undirected graphs, and two copies for directed
graphs (as the CSR and CSC representations are equal for directed graphs).

D. Partition Balancing Criterion

We have argued that balancing the number of edges across partitions does not necessarily result in the best balancing of
CPU time. Instead, some algorithms observe better CPU load balancing when the number of vertices in each partition is about
equal. GraphGrind adds a parameter to the algorithm specification that shows its preference for a balanced edge partitioning
vs. a balanced vertex partitioning. This parameter is checked during graph ingress in order to select the balancing criterion
for graph partitioning. Our balanced vertex partitioning is similar to Algorithm 1, except that we strive for |V |/P destination
vertices in each partition.

Balancing vertices is appropriate for 3 of the 8 algorithms that we use in the experimental evaluation. The algorithms are
commonly used in prior work. As such, this property is sufficiently important to ask programmers to record it. The property
is easily derived from the algorithm specification.

E. NUMA Optimization

The state-of-the-art in NUMA-aware programming requires two coordinated actions: (i) data placement and (ii) thread
placement. Common data placement strategies are to allocate data in a specific NUMA node or to distribute the data across
nodes. Thread placement is optimized such that the thread has a low latency/high bandwidth connection to the NUMA domain
holding its most frequently accessed data. This two-pronged strategy allows for many optimizations, such as co-locating threads
with data and spreading data and threads across NUMA domains to enhance memory bandwidth.

Graph partitions can enforce NUMA-local access as each partition can be stored and processed within the confines of one
NUMA node. Prior work has advocated to replicate frontiers and algorithm-specific data arrays on each NUMA node [28].
Accordingly, memory accesses are NUMA-local, except when interchanging data across nodes.

GraphGrind follows a different route, which is summarized in Table I. The full graph is stored in an interleaved fashion
over the NUMA nodes. As the full graph is used with sparsely populated frontiers only, the memory accesses are few and
hard to schedule optimally. Interleaved allocation provides a good compromise.

Graph partitions are spread over NUMA nodes in such a way that each partition is stored on one NUMA node and all
NUMA nodes hold the same number of partitions. A graph traversal over a partition is scheduled on the NUMA node that
holds that partition. This ensure that the majority of memory accesses are issued against the local NUMA node.

We distribute vertex arrays over NUMA nodes, storing the element for each vertex on the same NUMA node as its home
partition. As such, the edge-map operation that is writing data to a vertex element performs NUMA-local accesses. This
placement incurs some false sharing, as NUMA placement works on the granularity of virtual memory pages. As such, a
small fraction of the vertices will be placed on a remote NUMA node. E.g., assuming 1 M vertices, at most 1 in 10,000 will
be stored in a different node. The distribution of vertex arrays may be highly skewed due to the imbalance of vertices in each
partition. Loops iterating over the vertex arrays, such as vertex-map and loops that analyze frontiers, are however scheduled

TABLE II: Graph algorithms and their characteristics. Frontiers: S=sparse, D=dense.
Algorithm Description Edge traversal Frontiers Cache Balance
BC betweenness-centrality [23] backward SDS Yes Vertices
CC connected components using label propagation [23] backward DS Yes Edges
PR simple Page-Rank algorithm using power method (10 iterations) [20] backward D Yes Edges
BFS breadth-first search [23] backward SDS No Vertices
PRDelta optimized Page-Rank forwarding delta-updates between vertices [23] forward DS No Edges
SPMV sparse matrix-vector multiplication (1 iteration) forward D No Edges
BF Bellman-Ford algorithm for single-source shortest path [23] forward SDS No Vertices
BP Bayesian belief propagation [28] (10 iterations) forward D No Edges

such that the loop iterations are equally spread across NUMA nodes. While this induces some remote NUMA accesses, it is
far more important to load-balance these loops than it is to optimize NUMA-awareness.

An alternative strategy is to replicate the vertex arrays on each NUMA node [28]. We found this to be sub-optimal due to
the additional memory traffic that is required to replicate and to merge vertex arrays. In contrast, our NUMA placement and
scheduling rules guarantee that an edge-map operation on a graph partition only writes to vertex array elements stored on the
local NUMA node. Read operations may be remote, but these have lower impact on performance. As such, we obtain good
NUMA locality without incurring the overhead of replicating data.

F. A NUMA-Aware Cilk Extension

GraphGrind is built on Cilk [8], an efficient work-stealing scheduler for parallel programs. Cilk, however, is agnostic of the
memory hierarchy as it promotes cache-obliviousness [7], [27]. We modify the Cilk language and runtime system to support
NUMA-aware scheduling and work stealing. We have deliberately searched for a minimalistic modification as to not affect
space- and time-efficiency [3] and implement this in Intel Cilkplus version 1.2 [12]. We delegate a proof of the space and
time bounds to future work.

We focus exclusively on parallel loops, which in Cilk are expressed with the cilk_for keyword, asserting that all
iterations of the loop may execute in parallel. We extend the programming language with a pragma “#pragma cilk
numa(strict)” that can be supplied immediately preceding a cilk_for loop, similarly to the existing grainsize pragma.
The NUMA pragma indicates that loop iteration i should preferably be executed on cores associated to NUMA domain
i. The assumption that the number of loop iterations does not exceed the number of NUMA domains is a pragmatic one.
Programmers may split loops over a NUMA-aware outer loop and a normal cilk for innner loop that executes only on the
NUMA domain encoded in its calling context.

Cilk implements parallel loops using a helper function that recursively splits the iteration range of the loop in half. Once
the iteration range is shorter than a heuristically determined threshold the helper function executes the loop sequentially over
this part of iteration range.

Figure 7 (a) shows the call tree of the helper function for a loop with 4 iterations. Each node represents an invocation of the
helper function. Edges indicate a parent-child relationship between function calls. Nodes in distinct subtrees are independent
and may execute concurrently. Cilk uses a work-first scheduler [3] which translates into a depth-first traversal of the tree
(Figure 7 (b)). Idle threads attempt to steal work from a randomly selected victim thread. Threads steal the continuation of the
oldest function on their victim’s call stack, i.e., the one nearest to the root of the call tree. E.g., if thread A starts execution
of the range 0-3 in depth-first order it will first execute the sub-range 0-1. Meanwhile, thread B may steal the continuation
of the oldest function and execute the sub-range 2-3.

We provide a NUMA-aware helper function that changes the execution order of loop iterations. The thread that executes
an instance of the helper function checks its current NUMA domain and first executes the sub-range that matches its NUMA
domain. E.g., if a thread on NUMA domain 2 initiates execution of the loop, it executes the range 2-3 before the range 0-1
(Figure 7 (c)). This strategy is applied recursively: a thread on NUMA domain 3 will first execute loop iteration 3. This way,
work is distributed to the correct NUMA domain with a minimal work stealing (Figure 7 (d)).

Work stealing is modified to respect the NUMA constraints. Every dynamic function call is marked by the helper function
with the range of NUMA nodes where the function may execute. This range reflects the iteration sub-range of the loop. The
range is copied over to recursively called functions. A worker that selects a victim thread inspects the NUMA range of the
victim’s oldest function and aborts the work stealing attempt if the NUMA range does not contain its own NUMA node. By
default, NUMA ranges are not set and work stealing proceeds as normal.

The algorithm is robust against anomalous conditions such as absence of active threads on a NUMA domain and a mismatch
between the number of NUMA domains specified by the program and those in hardware. In both cases, pending iterations
are executed on sub-optimal NUMA domains.

The NUMA extension supports non-commuting reductions [6] and pedigrees [16]. Both constructs depend on the execution
order of function calls, which the helper function disrupts. The solution is beyond the scope of this paper.

V. EXPERIMENTAL EVALUATION

We evaluate GraphGrind on a 4-socket 2.6GHz Intel Xeon E7-4860 v2, totaling 96 threads, with 256 GB of DRAM.
We compile all codes using our modified version of the Clang compiler which implements the NUMA extension to Intel
Cilkplus [12]. We evaluate 8 graph algorithms (see Table II) using 9 widely used graph data sets (see Table III). All reported
results are averaged over 5 executions.

TABLE III: Characterization of real-world and synthetic graphs used in experiments.
Graph Vertices Edges Type
Twitter [14] 41.7M 1.467B directed
Friendster [26] 125M 1.81B directed
Orkut [18] 3.07M 234M undirected
LiveJournal [26] 4.85M 69.0M directed
Yahoo mem [25] 1.64M 30.4M undirected
USAroad [28] 23.9M 58M undirected
Powerlaw (α = 2.0) 100M 1.5B directed
RMAT24 16.8M 168M directed
RMAT27 134M 1.342B directed

TABLE IV: Runtime in seconds of GraphGrind, Polymer, Ligra and Galois. The fastest results are indicated in bold-face.
Execution times that differ by less than 1% are both labeled. Missing results occur as not all systems implement each algorithm.
GraphGrind and Polymer use 4 partitions.

Algoritm Graph GG Polymer Ligra Galois
Twitter 1.810 2.580 2.878 16.660

Friendster 5.924 8.030 7.330 6.210
Orkut 0.122 0.180 0.138 0.311

LiveJournal 0.111 0.177 0.125 0.206
CC Yahoo mem 0.042 0.049 0.063 0.046

USAroad 35.348 36.730 38.910 20.110
Powerlaw 1.168 2.110 1.680 3.113
RMAT24 0.455 0.522 0.601 1.440
RMAT27 2.305 3.220 2.444 10.120
Twitter 1.771 4.130 4.160

Friendster 3.394 5.490 6.110
Orkut 0.149 0.160 0.178

LiveJournal 0.197 0.334 0.388
BC Yahoo mem 0.091 0.110 0.150

USAroad 4.402 5.174 6.010
Powerlaw 2.118 2.300 2.860
RMAT24 0.482 0.503 1.110
RMAT27 2.073 2.360 15.110
Twitter 15.979 20.400 23.660 20.120

Friendster 38.249 41.8 43.300 61.200
Orkut 1.596 1.660 2.240 2.120

LiveJournal 0.652 0.688 0.708 0.700
PR Yahoo mem 0.234 0.262 0.278 0.255

USAroad 0.933 1.220 1.582 1.180
Powerlaw 10.394 12.716 13.600 11.614
RMAT24 2.730 2.970 3.660 3.110
RMAT27 17.517 23.21 28.600 30.220
Twitter 0.254 0.298 0.319 0.449

Friendster 0.896 0.899 1.210 1.330
Orkut 0.039 0.043 0.044 0.051

LiveJournal 0.050 0.068 0.078 0.103
BFS Yahoo mem 0.025 0.026 0.033 0.363

USAroad 1.750 1.855 2.009 5.180
Powerlaw 0.595 0.601 0.599 0.993
RMAT24 0.104 0.119 0.118 0.104
RMAT27 0.412 0.421 0.429 0.631

Algoritm Graph GG Polymer Ligra Galois
Twitter 20.560 24.120 29.890

Friendster 36.097 36.600 62.100
Orkut 1.244 1.310 3.472

LiveJournal 1.013 1.110 1.138
PRDelta Yahoo mem 0.831 1.094 1.640

USAroad 2.124 2.260 2.905
Powerlaw 10.659 14.100 16.900
RMAT24 1.845 2.230 2.911
RMAT27 8.645 12.120 14.500
Twitter 2.251 2.860 4.610

Friendster 3.624 5.220 9.010
Orkut 0.148 0.208 0.630

LiveJournal 0.060 0.096 0.151
SPMV Yahoo mem 0.033 0.045 0.063

USAroad 0.077 0.128 0.166
Powerlaw 0.655 0.661 0.707
RMAT24 0.197 0.221 0.288
RMAT27 1.963 2.210 2.830
Twitter 1.489 1.618 2.213 12.810

Friendster 6.498 7.193 7.690 9.220
Orkut 0.213 0.310 0.354 2.100

LiveJournal 0.258 0.293 0.284 0.530
BF Yahoo mem 0.146 0.200 0.173 0.288

USAroad 21.992 24.110 26.310 16.330
Powerlaw 10.326 11.112 12.600 15.110
RMAT24 1.366 1.390 1.410 1.880
RMAT27 1.665 1.933 2.180 5.310
Twitter 38.896 38.900 56.980

Friendster 58.704 66.210 129.000
Orkut 2.223 3.110 5.538

LiveJournal 1.026 1.420 1.940
BP Yahoo mem 0.448 0.455 1.124

USAroad 1.024 1.660 1.462
Powerlaw 15.264 15.530 19.500
RMAT24 4.788 7.030 9.310
RMAT27 32.994 43.320 58.230

A. Performance Comparison

We compare the performance of GraphGrind against leading graph analytics systems for shared-memory, namely Ligra1 [23],
Polymer 2[28] and Galois [19] version 2.0 (Table IV). GraphGrind and Polymer both use 4 partitions to match the NUMA
characteristics of our hardware. All systems use 96 threads. We show the backward PageRank algorithm for Polymer as the
forward version, presented in [28], contains errors. The absolute execution times depend on our hardware, compiler version
and randomly generated graphs. Moreover, some algorithms are sensitive to the start vertex, which in our experiments is
vertex 100 for all graphs. The reported trends match previously reported results.

Overall, GraphGrind outperforms the other systems for all algorithms and all graphs, except for CC and BF on the USAroad
graph. In these cases, Galois is faster. This results from using different algorithms [19], [28]. Nonetheless, GraphGrind makes
progress over Polymer and Ligra for these cases. In a few cases, GraphGrind performs on par with other systems. These are
labeled in bold-face as well.

The performance improvements are significant: up to 326% faster than Ligra (SPMV with Orkut graph) and up to 82.2%
faster than Polymer (BP with USAroad graph). The smallest speedups appear for BFS, as there is already little computation
going on. The superior performance of GraphGrind results from a combination of optimizations. Next, we will tease out the
main contributing factors.

1https://github.com/jshun/ligra.git
2http://ipads.se.sjtu.edu.cn:1312/opensource/polymer.git

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Tw
it

te
r

Fr
ie

n
d

st
e

r
O

rk
u

t
Li

ve
Jo

u
rn

al
P

o
w

e
rl

aw
Tw

it
te

r
Fr

ie
n

d
st

e
r

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
e

rl
aw

Tw
it

te
r

Fr
ie

n
d

st
e

r
O

rk
u

t
Li

ve
Jo

u
rn

al
P

o
w

e
rl

aw
Tw

it
te

r
Fr

ie
n

d
st

e
r

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
e

rl
aw

Tw
it

te
r

Fr
ie

n
d

st
e

r
O

rk
u

t
Li

ve
Jo

u
rn

al
P

o
w

e
rl

aw

CC PR PRDelta SPMV BP

Sp
ee

d
u

p
 C

o
m

p
re

ss
e

d
 o

p
t.

Fig. 8: Speedup of compressed graph compared to visit
zero-degree vertices.

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%

Tw
it

te
r

Fr
ie

n
d

st
er

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
er

la
w

Tw
it

te
r

Fr
ie

n
d

st
er

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
er

la
w

Tw
it

te
r

Fr
ie

n
d

st
er

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
er

la
w

Tw
it

te
r

Fr
ie

n
d

st
er

O
rk

u
t

Li
ve

Jo
u

rn
al

P
o

w
er

la
w

BFS BC BF PR

Sp
e

e
d

u
p

Fig. 9: Speedup of balancing vertices compared to balancing
edges in graph partitions.

-20%
-15%
-10%
-5%
0%
5%

10%
15%
20%

Tw
itt
er

Fr
ie
nd
st
er

O
rk
ut

Liv
eJ
ou
rn
al

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd
st
er

O
rk
ut

Liv
eJ
ou
rn
al

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd
st
er

O
rk
ut

Liv
eJ
ou
rn
al

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd
st
er

O
rk
ut

Liv
eJ
ou
rn
al

Po
w
er
la
w

Tw
itt
er

Fr
ie
nd
st
er

O
rk
ut

Liv
eJ
ou
rn
al

Po
w
er
la
w

CC PR PRDelta SPMV BP

Sp
ee

du
p	
ov
er
	G
ra
ph

Gr
in
d code	and	data	follow	 partitions code	and	data	balance	vertices

Fig. 10: Impact of NUMA decisions for vertex arrays.
GraphGrind may be described as data follow partitions,
code balances iterations.

0%

50%

100%

150%

200%

P GG P GG P GG P GG P GG

Twitter Friendster Orkut LiveJournal PowerLaw

In
cr
ea
se
	G
ra
ph
	S
to
ra
ge
	

ov
er
	L
ig
ra

2 4 8 16

Fig. 11: Increase of graph storage for Polymer (P) and Graph-
Grind (GG) compared to Ligra.

B. Compressed Graph Representation

GraphGrind’s graph data structure prunes vertices with zero degree from the representation. We will show later that this
saves significant spaces compared to the CSC and CSR representations used by Polymer. Moreover, by not storing these
vertices, edge-map traversals no longer need to visit them. Figure 8 shows the speedup resulting from the graph representation
for 5 algorithms, which ranges between 2% and 16%. Twitter and LiveJournal benefit most due to the high sparsity of graph
partitions.

C. Adapting Graph Partitioning

We remove CPU load imbalance through selecting an appropriate criterion to balance the graph partitions. We identified
through code inspection that 3 of the evaluated algorithms (BFS, BC and BF) prefer an equal number of vertices in each
partition. The others prefer a uniform number of edges. Figure 9 shows the speedup obtained by balancing vertices over
balancing edges for these 3 algorithms and PR. We show results for a subset of the graphs, the remaining graphs behave
similar to the ones shown. The partitioning has negligible impact for Friendster and PowerGraph, which have a balanced
number of vertices per partition in either case (see Figure 4). Graphs with unbalanced partitions see important improvements
with vertex-balanced partitions, with up to 37% speedup for LiveJournal.

Vertex-balanced partitioning is appropriate only for algorithms with fixed amount of work per vertex. Other algorithms, like
PR, have a strong preference for edge-balanced partitioning. We conclude that it is crucial to balance partitions appropriately
to the algorithm.

D. NUMA Optimization

Various choices can be made for the placement of vertex arrays, i.e., arrays storing frontiers or per-vertex application-specific
data. GraphGrind places the vertex arrays such that each vertex is co-located with its home partition. Vertex-oriented loops,
such as those in vertex-map, are typically short and have well-balanced work per iteration. As such, GraphGrind distributes
the iterations equally across threads, even though this results in remote NUMA accesses.

We compare two variations on the NUMA policy (Figure 10): (i) placing vertex data and scheduling iterations on their
home partition; (ii) equally spreading vertex data and iterations across all NUMA nodes. Option (i) aims to avoid remote
NUMA access during vertex-oriented loops. This is however uniformly worse than GraphGrind’s policy. It shows that CPU
load balance is simply more important than NUMA locality for the vertex-oriented loops.

Option (ii) load-balances vertex-oriented loops and tries to minimize remote NUMA accesses by spreading vertex arrays
to match the distribution of iterations. This results in worse performance in nearly all cases as the placement decision is

sub-optimal for the edge-map operator. This operator performs the majority of main memory accesses and will incur excess
remote memory accesses when vertices are not co-located with their home partition.

An interesting effect occurs when SPMV processes the Twitter graph, as in this case an increase in remote memory
accesses during edge-map results in improved performance. We contrast this against Friendster, where the same effect results
in performance degradation. We measured the local and remote memory accesses incurred and observe that both GraphGrind
and option (ii) incur the same total number of memory accesses and that option (ii) incurs an increased number of remote
accesses for both graphs.

The performance difference between the graphs, however, results as Twitter has highly skewed partitions: The number of
elements of vertex arrays accessed on one NUMA node is much higher than on other NUMA nodes. Where GraphGrind
directs those accesses to the local NUMA node, option (ii) spreads them across nodes. This way, option (ii) can share the
unused memory bandwidth on one NUMA node with the computation on another node. On Friendster, GraphGrind is faster
than option (ii) because Friendster has relatively uniform partitions and performs more memory accesses per unit of time. As
such, all NUMA nodes are equally stressed and there is no benefit in making remote accesses.

These results show that a careful trade-off is required to optimize NUMA placement, as option (i) incurs fewer remote
memory accesses than GraphGrind, yet has worse performance. In rare cases can remote accesses result in performance
improvement due to imbalance in memory traffic.

E. Peephole Optimizations

GraphGrind marks frontiers that are initialized to contain all vertices such that an optimized edge-map can avoid memory
accesses and control flow related to frontier access. Only algorithms that initialize frontiers this way can benefit. The algorithms
using backward traversal (CC and PR) benefit most, up to 8%, as the backward traversal queries the frontier once for every
edge, while the forward traversal queries it only once per vertex. The speedup is modest, but consistently positive. It moreover
requires no user intervention.

GraphGrind allows programmers to define a cache, which allows the compiler to store intermediate values in registers (the
cache) and avoid memory accesses. This optimization is relevant only during backward traversal. When applicable, the cache
results in a speedup between 2 and 15%.

F. Memory Usage

Figure 11 shows the additional memory used on graph data for Polymer and GraphGrind compared to Ligra. Polymer stores
each graph partition in CSR and CSC format (as in Ligra) using index arrays of length |V |. Because of this, the memory
consumption of Polymer grows as P |V | for P partitions. As GraphGrind stores only vertices with non-zero degree in the index
arrays, its memory usage grows more slowly and follows the vertex replication factor (Figure 3). However, as GraphGrind
stores an additional copy of the graph for sparse traversal, it starts at a 50% increase compared to Ligra for directed graphs.
Overall, GraphGrind’s memory consumption is more scalable than Polymer’s.

VI. FURTHER RELATED WORK

It has been documented that generic tools such as METIS [13] to partition graphs by vertex or edge cut do not produce
good partitions for social network graphs. Moreover, they take much more time to compute than many graph algorithms.
Sheep [17] is a distributed graph partitioner that produces high quality edge partitions an order of magnitude faster than
METIS. Alternatively, linear-time heuristics have been proposed. The vertex cut is a greedy edge partitioning algorithm that
minimizes the number of cut vertices [9].

Bourse et al. [4] target distributed memory systems as it minimizes the number of edges crossing partitions, which involve
messages. This is not immediately relevant to the performance of shared memory systems. It is not immediately clear that the
algorithm would perform well in the context of our system. The algorithm moreover approximates edge and vertex balancing.
Experimental evaluation shows deviations in the vertex balance up to 50%, which would have a prohibitively high impact on
GraphGrind.

GraphChi [15] streams graph data from disk. It uses partitioning to obtain small vertex sets that fit in the main memory. It
uses partitioning by destination with an equal number of edges per partition. The vertex data must be made to fit in memory
by tuning the number of partitions.

X-Stream [21] uses what we call partitioning by source, but does not required edges to be pre-sorted. It aims for a uniform
number of vertices per partition as it wants to keep only vertex data in fast memory (e.g., CPU cache), whereas edges are
streamed in from slower memory (e.g., main memory).

GraphX [10] is a library for graph analytics. It partitions edge lists using Spark’s resilient distributed datasets (RDD) and
supports user-defined partitioning schemes.

Our observations are relevant for each of the systems discussed above. E.g., the reduced connectivity of partitions implies
that memory locality is poor in a system like X-stream. A large variation in vertices per partition implies that partitions with
few vertices will leave a large portion of main memory unutilized in GraphChi.

Frasca et al. [5] design NUMA-aware work queues for betweenness centrality. The work queues first execute locally
generated work prior to stealing work from other queues. Work queues are visited in order of increasing NUMA distance.
They demonstrate a 51.2% performance improvement compared to an OpenMP implementation.

Agarwal et al. [1] study the execution of breadth-first-search on NUMA systems. They too organize the computation around
work queues, spread over multiple sockets. They use efficient spinning locks and lock-free channels to synchronize threads
and they introduce peephole optimizations, e.g., avoiding atomic operations by first checking if they will fail.

Graph compression can significantly reduce memory requirements and with it memory bandwidth. Shun et al [24] compress
the destination IDs of vertices stored in the edge array of the CSR and CSC representations. They reduce memory usage up
to 56%. These techniques are orthogonal to the compressed representation of the CSC and CSR index arrays proposed in this
work, as they pertain to edges only.

VII. CONCLUSION

Graph partitioning is an important technique to efficiently orchestrate the execution of graph analytics. In this paper, we
study graph partitioning in the context of NUMA-aware data placement and code scheduling. We analyze the performance
issues that graph partitioning inadvertently introduces, including load imbalance, increased work per vertex, and a significantly
reduced connection density. Combined, these problems imply that graph partitioning is inherently unscalable to large partition
counts.

We propose several techniques to counter-act the identified performance issues and implement these in GraphGrind, a novel
NUMA-aware graph analytics framework that is compatible with the Ligra API. We moreover extend the Cilk language, in
which GraphGrind is implemented, to enable NUMA-aware scheduling.

GraphGrind achieves significant speedup compared to prior work, out-performing Polymer, the most recent contender, by
as much as 82%. We moreover show that fully minimizing remote memory accesses is not optimal in irregular computations.
Instead, one needs to strike a careful trade-off between remote accesses and CPU load balancing.

We believe that this work makes important progress in making graph partitioning scalable. In future work, we will explore
how to apply graph partitioning at much higher scales and translate these into enhanced performance.

ACKNOWLEDGMENT

This work is supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under the ASAP
project, grant agreement no. 619706, and by the United Kingdom EPSRC under grant agreement EP/L027402/1.

REFERENCES

[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A.Bader. Scalable Graph Exploration on Multicore Processors, in Proc. of the Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis. 2010, pp.1–11.

[2] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing Breadth-first Search, in Proc. of the Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis. 2012, 10 pages.

[3] R. D. Blumofe and C. E. Leiserson Scheduling multithreaded computations by work stealing, in Proc. of the Annual Symp. on Foundations of Computer
Science. 1994, pages:356–368.

[4] B. Florian, L. Marc, and V. Milan. Balanced graph edge partition, in Proc. of the 20th SIGKDD Intl. Conf. on Knowledge discovery and data
mining. 2014, pages 1456–1465.

[5] M. Frasca, K. Madduri, and P. Raghavan, “NUMA-aware graph mining techniques for performance and energy efficiency,” in Proc. of the Intl. Conf.
on High Performance Computing, Networking, Storage and Analysis. 2012, pp. 95:1–95:11.

[6] M. Frigo, P. Halpern, C. E Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++ hyperobjects, in Proc. of the Annual Symp. on Parallelism in
algorithms and architectures. 2009, pages 79–90.

[7] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms, in Proc. of the Annual Symp. on Foundations of Computer
Science. 1999, pages 285–.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multithreaded Language. In Proc. of the Conf. on Programming
Language Design and Implementation. 1998, pages 212–223.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed graph-parallel computation on natural graphs.” in OSDI, vol. 12,
no. 1, 2012, p. 2.

[10] J. E Gonzalez, R. S Xin, A. Dave, D. Crankshaw, M. J Franklin, and I. Stoica. Graphx: Graph processing in a distributed dataflow Framework, in
Proc. of the Intl. Symp. on Operating System Design and Implementation.2014, pages 599–613.

[11] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph exploration on multi-core cpu and gpu,” in Intl. Conf. on Parallel Architectures and
Compilation Techniques. 2011, pp. 78–88.

[12] Intel Cilk Plus Language Extension Specification (version 1.2. 324396-003us ed.). 2014, Intel.
[13] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular graphs,” Journal of Parallel and Distributed Computing, vol. 48, no. 1,

pp. 96 – 129, 1998.
[14] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a news media?” in Proc. of the 19th Intl. Conf. on World wide web.

2010, pp. 591–600.
[15] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph computation on just a PC.” in OSDI, vol. 12, 2012, pp. 31–46.
[16] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic Parallel Random-number Generation for Dynamic-multithreading Platforms, in Proc. of

the Symp. on Principles and Practice of Parallel Programming. 2012, pages 193–204.
[17] D. Margo and M. Seltzer, “A scalable distributed graph partitioner,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1478–1489, Aug. 2015.
[18] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Measurement and Analysis of Online Social Networks,” in Proc. of the

ACM/Usenix Internet Measurement Conf. October 2007.
[19] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph analytics,” in Proc. of the ACM Symp. on Operating Systems Principles.

2013, pp. 456–471.
[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web.” Stanford InfoLab, Technical Report

1999-66, November 1999, previous number = SIDL-WP-1999-0120.
[21] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph processing using streaming partitions,” in Proc. of the ACM Symp. on

Operating Systems Principles. 2013, pp. 472–488.
[22] Y. Saad, “SPARSKIT: A basic tool for sparse matrix computations,” NASA, Tech. Rep. NASA-CR-185876, May 1990.
[23] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for shared memory,” in Proc. of the ACM Symp. on Principles and

Practice of Parallel Programming. 2013, pp. 135–146.
[24] J. Shun, L. Dhulipala, and G. E Blelloch. Smaller and faster: Parallel processing of compressed graphs with Ligra+, in Data Compression.2015, pp.

403–412.
[25] Y. Vigfusson, “Affinity in distributed systems,” Ph.D. dissertation, Cornell University, 2010.
[26] J. Yang and J. Leskovec, “Defining and evaluating network communities based on ground-truth,” CoRR, vol. abs/1205.6233, 2012.
[27] K. Yotov, Tom R., K. Pingali, J. Gunnels, and F. Gustavson. An experimental comparison of cache-oblivious and cache-conscious programs, in Proc.

of the Annual Symp. on Parallel algorithms and architectures. 2007, pp. 93104.
[28] K. Zhang, R. Chen, and H. Chen, “NUMA-aware graph-structured analytics,” in Proc. of the ACM Symp. on Principles and Practice of Parallel

Programming. 2015, pp. 183–193.

