17 research outputs found

    A Highly Tunable Stereoselective Dimerization of Methyl Ketone: Efficient Synthesis of <i>E</i>- and <i>Z</i>‑1,4-Enediones

    No full text
    A new method for the tunable synthesis of 1,4-enedione directly from aromatic methyl ketone is described. This tandem reaction enables the construction of symmetric and unsymmetric 1,4-enediones with complete <i>E</i>-selectivity. Moreover, the resulting <i>E</i>-1,4-enedione could be transformed into a <i>Z</i>-isomer by irradiation with 23 W of white light

    Additional file 2: of Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata)

    No full text
    Down-regulated proteins after application of uniconazole. The down-regulated proteins with <0.8-fold change and p-value less than 0.05 and their ratios among all comparative groups listed in the table. (XLSX 46 kb

    Table1_Differential expression of plasma exosomal microRNA in severe acute pancreatitis.DOCX

    No full text
    The incidence rate of acute pancreatitis is increasing, and severe acute pancreatitis (SAP) is associated with a high mortality rate, which may be reduced by a deeper understanding of its pathogenesis. In addition, an early determination of the severity of acute pancreatitis remains challenging. The aim of this study was to match potential biomarkers for early identification and monitoring of acute pancreatitis and to shed light on the underlying pathogenic mechanisms of SAP. The expression levels of plasma exosomal microRNA (miRNA) in patients with pancreatitis have been associated with the disease. Thus, this study compared the expression levels of exosomal miRNA in plasma collected from four patients with SAP and from four healthy participants. Analyses of the miRNA expression profiles indicated that three previously unreported miRNAs were differentially expressed in the patient group: Novel1, which was downregulated, and Novel2 and Novel3, which were upregulated. The miRNA target genes for those novel miRNAs were predicted using Metascape. Of these miRNA target genes, those that were also differentially expressed at different time points after disease induction in a mouse model of acute pancreatitis were determined. The gene for complement component 3 (C3), a target gene of Novel3, was the only gene matched in both the patient group and the mouse model. C3 appeared at most of the time points assessed after induction of acute pancreatitis in mice. These findings are foundational evidence that C3 warrants further study as an early biomarker of SAP, for investigating underlying pathogenic mechanisms of SAP, and as a therapeutic target for ameliorating the occurrence or development of SAP.</p

    A Family of Highly Efficient CuI-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach

    No full text
    Copper­(I) iodide (CuI)-based inorganic–organic hybrid materials in the general chemical formula of CuI­(L) are well-known for their structural diversity and strong photoluminescence and are therefore considered promising candidates for a number of optical applications. In this work, we demonstrate a systematic, bottom-up precursor approach to developing a series of CuI­(L) network structures built on CuI rhomboid dimers. These compounds combine strong luminescence due to the CuI inorganic modules and significantly enhanced thermal stability as a result of connecting individual building units into robust, extended networks. Examination of their optical properties reveals that these materials not only exhibit exceptionally high photoluminescence performance (with internal quantum yield up to 95%) but also that their emission energy and color are systematically tunable through modification of the organic component. Results from density functional theory calculations provide convincing correlations between these materials’ crystal structures and chemical compositions and their optophysical properties. The advantages of cost-effective, solution-processable, easily scalable and fully controllable synthesis as well as high quantum efficiency with improved thermal stability, make this phosphor family a promising candidate for alternative, RE-free phosphors in general lighting and illumination. This solution-based precursor approach creates a new blueprint for the rational design and controlled synthesis of inorganic–organic hybrid materials

    A Family of Highly Efficient CuI-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach

    No full text
    Copper­(I) iodide (CuI)-based inorganic–organic hybrid materials in the general chemical formula of CuI­(L) are well-known for their structural diversity and strong photoluminescence and are therefore considered promising candidates for a number of optical applications. In this work, we demonstrate a systematic, bottom-up precursor approach to developing a series of CuI­(L) network structures built on CuI rhomboid dimers. These compounds combine strong luminescence due to the CuI inorganic modules and significantly enhanced thermal stability as a result of connecting individual building units into robust, extended networks. Examination of their optical properties reveals that these materials not only exhibit exceptionally high photoluminescence performance (with internal quantum yield up to 95%) but also that their emission energy and color are systematically tunable through modification of the organic component. Results from density functional theory calculations provide convincing correlations between these materials’ crystal structures and chemical compositions and their optophysical properties. The advantages of cost-effective, solution-processable, easily scalable and fully controllable synthesis as well as high quantum efficiency with improved thermal stability, make this phosphor family a promising candidate for alternative, RE-free phosphors in general lighting and illumination. This solution-based precursor approach creates a new blueprint for the rational design and controlled synthesis of inorganic–organic hybrid materials

    La sélection du maïs pour le milieu irrigué

    Get PDF
    <div><p>Microrefugia at high altitudes or high latitudes are thought to play an important role in the post-glacial colonization of species. However, how populations in such microrefugia have responded to climate changes in alternating cold glacial and warm interglacial stages remain unclear. Here we present evidence to indicate the Rongbuk Valley of the Mt. Qomolangma (Mt. Everest) area, the highest region on earth, had microrefugia for <i>Hippophae tibetana</i> and discuss how this low shrub was adapted to the extreme climate fluctuations of the last 25,000 years by shifts. By integrating geological, glaciological, meteorological, and genetic information, we found that the Rongbuk Valley was not only a glacial microrefugium but also an interglacial microrefugium for <i>H. tibetana</i>: the former was located on the riverbank below 4800 m above sea level (asl) or lower area and the latter at ∼5000 m asl. Our results show that after the Last Glacial Maximum (LGM), <i>H. tibetana</i> in the valley has undergone upward and downward migrations around ∼5000 m driven by climate fluctuations and the population in the glacial microrefugium has suffered extinction or extreme contraction. Moreover, with the rise of temperature in the last four decades, the upper limit of <i>H. tibetana</i> has shifted at least 30 m upward. Combining population history and recent range shift of this species is important in predicting the fate of this endemic species to future climate changes.</p></div

    A Family of Highly Efficient CuI-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach

    No full text
    Copper­(I) iodide (CuI)-based inorganic–organic hybrid materials in the general chemical formula of CuI­(L) are well-known for their structural diversity and strong photoluminescence and are therefore considered promising candidates for a number of optical applications. In this work, we demonstrate a systematic, bottom-up precursor approach to developing a series of CuI­(L) network structures built on CuI rhomboid dimers. These compounds combine strong luminescence due to the CuI inorganic modules and significantly enhanced thermal stability as a result of connecting individual building units into robust, extended networks. Examination of their optical properties reveals that these materials not only exhibit exceptionally high photoluminescence performance (with internal quantum yield up to 95%) but also that their emission energy and color are systematically tunable through modification of the organic component. Results from density functional theory calculations provide convincing correlations between these materials’ crystal structures and chemical compositions and their optophysical properties. The advantages of cost-effective, solution-processable, easily scalable and fully controllable synthesis as well as high quantum efficiency with improved thermal stability, make this phosphor family a promising candidate for alternative, RE-free phosphors in general lighting and illumination. This solution-based precursor approach creates a new blueprint for the rational design and controlled synthesis of inorganic–organic hybrid materials

    A Family of Highly Efficient CuI-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach

    No full text
    Copper­(I) iodide (CuI)-based inorganic–organic hybrid materials in the general chemical formula of CuI­(L) are well-known for their structural diversity and strong photoluminescence and are therefore considered promising candidates for a number of optical applications. In this work, we demonstrate a systematic, bottom-up precursor approach to developing a series of CuI­(L) network structures built on CuI rhomboid dimers. These compounds combine strong luminescence due to the CuI inorganic modules and significantly enhanced thermal stability as a result of connecting individual building units into robust, extended networks. Examination of their optical properties reveals that these materials not only exhibit exceptionally high photoluminescence performance (with internal quantum yield up to 95%) but also that their emission energy and color are systematically tunable through modification of the organic component. Results from density functional theory calculations provide convincing correlations between these materials’ crystal structures and chemical compositions and their optophysical properties. The advantages of cost-effective, solution-processable, easily scalable and fully controllable synthesis as well as high quantum efficiency with improved thermal stability, make this phosphor family a promising candidate for alternative, RE-free phosphors in general lighting and illumination. This solution-based precursor approach creates a new blueprint for the rational design and controlled synthesis of inorganic–organic hybrid materials
    corecore