219 research outputs found

    Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications

    Get PDF
    Enterovirus 71 (EV71) has emerged as a significant pathogen causing large outbreaks in China for the past 3 years. Developing an EV71 vaccine is urgently needed to stop the spread of the disease; however, the adaptive immune response of humans to EV71 infection remains unclear. We examined the neutralizing antibody titers in HFMD patients and compared them to those of asymptomatic healthy children and young adults. We found that 80% of HFMD patients became positive for neutralizing antibodies against EV71 (GMT = 24.3) one day after the onset of illness. The antibody titers in the patients peaked two days (GMT = 79.5) after the illness appeared and were comparable to the level of adults (GMT = 45.2). Noticeably, the antibody response was not correlated with disease severity, suggesting that cellular immune response, besides neutralizing antibodies, could play critical role in controlling the outcome of EV71 infection in humans

    Agent- and activity- based large-scale simulation of enroute travel, enroute refuelling and parking behaviours in Beijing, China

    Get PDF
    This paper develops an agent- and activity-based large-scale simulation model for Beijing, China (MATSim-Beijing) to explicitly simulate enroute travel, enroute refuelling and parking behaviours, as well as the associated vehicular energy consumption and emissions, based on MATSim (Multi-Agent Transport Simulation), which is a typical integrated activity-based model. In order to take into account heterogeneous parking and refuelling behaviours, the MATSim-Beijing model incorporates several Multinomial Logit (MNL) models to predict individual choices about the maximum acceptable times of walking from trip destination to parking lot, of diverting to a refuelling station and of queuing at a station, using the data collected in a paper-based questionnaire survey in Beijing. A Sensitivity Analysis (SA) -based calibration method was used to estimate the model parameters by searching for an optimal parameter combination with the objective of minimize the gap between simulated and observed traffic flow data, exhibiting a relatively good performance of decreasing the Mean Absolute Percentage Error (MAPE) by around 23%. Further, the calibrated model was used to investigate whether and how the population scaling and network simplification, which were two commonly used approaches to speeding up large-scale traffic simulations, might influence model accuracy and computing time. The results indicated that both approaches could to some extent influence model outputs, though they could significantly reduce computing time

    A Dominant EV71-Specific CD4+ T Cell Epitope is Highly Conserved Among Human Enteroviruses

    Get PDF
    CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD), has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine

    Purification, Characterization and Antitumor Activities of a New Protein from Syngnathus acus, an Officinal Marine Fish

    Get PDF
    Discovery and development of new antitumor agents from abundant marine fish are attracting an increasing interest. In the present study, we extracted and purified a novel antitumor protein Syngnathusin from the whole body of Syngnathus acus L., a precious marine fish traditionally used for tumors. Syngnathusin was comprised of 16 kinds of amino acids, mainly acidic amino acids. Its molecular weight was 67.3 kDa and its isoelectric point was 4.57. The N-terminal amino acid sequence of Syngnathusin was determined to be Lys-Arg-Asp-Leu-Gly-Phe-Val-Asp-Glu-Ile-Ser-Ala-His-Tyr and showed no significant homology with the known proteins. Syngnathusin could significantly inhibit the growth of A549 and CCRF-CEM cells. However, the obvious proliferation inhibition against human non-tumor cell lines was not observed. Flow cytometry, morphologic assessment and comet assay revealed that Syngnathusin could induce apoptosis in A549 and CCRF-CEM cells and strongly cooperated with MTX. Syngnathusin could inhibit the growth of S180 tumor transplanted in mice. Syngnathusin may be developed as a novel, selective and effective antineoplastic agent

    Improvement of Morphine-Mediated Analgesia by Inhibition of β-Arrestin 2 Expression in Mice Periaqueductal Gray Matter

    Get PDF
    Morphine is a well-known μ-opioid receptor (MOR) agonist and an efficient analgesic, but its long-term use inevitably leads to drug addiction and tolerance. Here, we show that specific inhibition of β-arrestin2 with its siRNA lentivirus microinjected in mice periaqueductal gray matter (PAG) significantly improved both acute and chronic morphine analgesia and delayed the tolerance in the hotplate test. The specific effect of β-arrestin2 was proven by overexpression or knockdown of its homology β-arrestin1 in PAG, which showed no significant effects on morphine analgesia. These findings suggest that specific siRNA targeting β-arrestin2 may constitute a new approach to morphine therapy and other MOR agonist-mediated analgesia and tolerance

    Technology in Massachusetts Schools, 2004-2005

    Get PDF
    BACKGROUND:ATCC HIV-1 drug resistance test kit was designed to detect HIV-1 drug resistance (HIVDR) mutations in the protease and reverse transcriptase genes for all HIV-1 group M subtypes and circulating recombinant forms. The test has been validated for both plasma and dried blood spot specimen types with viral load (VL) of ≥1000 copies/ml. We performed an in-country assessment on the kit to determine the genotyping sensitivity and its accuracy in detecting HIVDR mutations using plasma samples stored under suboptimal conditions. METHODS:Among 572 samples with VL ≥1000 copies/ml that had been genotyped by ViroSeq assay, 183 were randomly selected, including 85 successful genotyped and 98 unsuccessful genotyped samples. They were tested with ATCC kits following the manufacturer's instructions. Sequence identity and HIVDR patterns were analysed with Stanford University HIV Drug Resistance HIVdb program. RESULTS:Of the 183 samples, 127 (69.4%) were successfully genotyped by either method. While ViroSeq system genotyped 85/183 (46.5%) with median VL of 32,971 (IQR: 11,150-96,506) copies/ml, ATCC genotyped 115/183 (62.8%) samples with median VL of 23,068 (IQR: 7,397-86,086) copies/ml. Of the 98 unsuccessful genotyped samples with ViroSeq assay, 42 (42.9%) samples with lower median VL of 13,906 (IQR: 6,122-72,329) copies/ml were successfully genotyped using ATCC. Sequence identity analysis revealed that the sequences generated by both methods were >98% identical and yielded similar HIVDR profiles at individual patient level. CONCLUSION:This study confirms that ATCC kit showed greater sensitivity in genotyping plasma samples stored in suboptimal conditions experiencing frequent and prolonged power outage. Thus, it is more sensitive particularly for subtypes A and A/G HIV-1 in resource-limited settings

    Maternal Malaria and Perinatal HIV Transmission, Western Kenya1,2

    Get PDF
    To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had malaria, and 102 (19.9%) infants acquired HIV perinatally. Log10 HIV viral load and episiotomy or perineal tear were associated with increased perinatal HIV transmission, whereas low-density malaria (<10,000 parasites/μL) was associated with reduced risk (adjusted relative risk [ARR] 0.4). Among women dually infected with malaria and HIV, high-density malaria (>10,000 parasites/μL) was associated with increased risk for perinatal MTCT (ARR 2.0), compared to low-density malaria. The interaction between placental malaria and MTCT appears to be variable and complex: placental malaria that is controlled at low density may cause an increase in broad-based immune responses that protect against MTCT; uncontrolled, high-density malaria may simultaneously disrupt placental architecture and generate substantial antigen stimulus to HIV replication and increase risk for MTCT

    Detection of minority drug resistant mutations in Malawian HIV-1 subtype C-positive patients initiating and on first-line antiretroviral therapy

    Get PDF
    Background: Minority drug resistance mutations (DRMs) that are often missed by Sanger sequencing are clinically significant, as they can cause virologic failure in individuals treated with antiretroviral therapy (ART) drugs. Objective: This study aimed to estimate the prevalence of minor DRMs among patients enrolled in a Malawi HIV drug resistance monitoring survey at baseline and at one year after initiation of ART. Methods: Forty-one plasma specimens collected from HIV-1 subtype C-positive patients and seven clonal control samples were analysed using ultra-deep sequencing technology. Results: Deep sequencing identified all 72 DRMs detected by Sanger sequencing at the level of ≥20% and 79 additional minority DRMs at the level of < 20% from the 41 Malawian clinical specimens. Overall, DRMs were detected in 85% of pre-ART and 90.5% of virologic failure patients by deep sequencing. Among pre-ART patients, deep sequencing identified a statistically significant higher prevalence of DRMs to nucleoside reverse transcriptase inhibitors (NRTIs) compared with Sanger sequencing. The difference was mainly due to the high prevalence of minority K65R and M184I mutations. Most virologic failure patients harboured DRMs against both NRTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs). These minority DRMs contributed to the increased or enhanced virologic failures in these patients. Conclusion: The results revealed the presence of minority DRMs to NRTIs and NNRTIs in specimens collected at baseline and virologic failure time points. These minority DRMs not only increased resistance levels to NRTIs and NNRTIs for the prescribed ART, but also expanded resistance to additional major first-line ART drugs. This study suggested that drug resistance testing that uses more sensitive technologies, is needed in this setting
    corecore