429 research outputs found

    Photoacoustic computed tomography guided microrobots for targeted navigation in intestines in vivo

    Get PDF
    Tremendous progress in synthetic micro/nanomotors has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT) guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules exhibit efficient propulsion in various biofluids once released. PACT has visualized the migration of micromotor capsules toward the targeted regions in real time in vivo. The integration of the developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo

    EC-Conf: An Ultra-fast Diffusion Model for Molecular Conformation Generation with Equivariant Consistency

    Full text link
    Despite recent advancement in 3D molecule conformation generation driven by diffusion models, its high computational cost in iterative diffusion/denoising process limits its application. In this paper, an equivariant consistency model (EC-Conf) was proposed as a fast diffusion method for low-energy conformation generation. In EC-Conf, a modified SE (3)-equivariant transformer model was directly used to encode the Cartesian molecular conformations and a highly efficient consistency diffusion process was carried out to generate molecular conformations. It was demonstrated that, with only one sampling step, it can already achieve comparable quality to other diffusion-based models running with thousands denoising steps. Its performance can be further improved with a few more sampling iterations. The performance of EC-Conf is evaluated on both GEOM-QM9 and GEOM-Drugs sets. Our results demonstrate that the efficiency of EC-Conf for learning the distribution of low energy molecular conformation is at least two magnitudes higher than current SOTA diffusion models and could potentially become a useful tool for conformation generation and sampling.Comment: 10 pages, 3 figure

    Taylor Genetic Programming for Symbolic Regression

    Get PDF
    Genetic programming (GP) is a commonly used approach to solve symbolic regression (SR) problems. Compared with the machine learning or deep learning methods that depend on the pre-defined model and the training dataset for solving SR problems, GP is more focused on finding the solution in a search space. Although GP has good performance on large-scale benchmarks, it randomly transforms individuals to search results without taking advantage of the characteristics of the dataset. So, the search process of GP is usually slow, and the final results could be unstable. To guide GP by these characteristics, we propose a new method for SR, called Taylor genetic programming (TaylorGP). TaylorGP leverages a Taylor polynomial to approximate the symbolic equation that fits the dataset. It also utilizes the Taylor polynomial to extract the features of the symbolic equation: low order polynomial discrimination, variable separability, boundary, monotonic, and parity. GP is enhanced by these Taylor polynomial techniques. Experiments are conducted on three kinds of benchmarks: classical SR, machine learning, and physics. The experimental results show that TaylorGP not only has higher accuracy than the nine baseline methods, but also is faster in finding stable results

    Plane kinematic calibration method for industrial robot based on dynamic measurement of double ball bar

    Get PDF
    Abstract(#br)A new calibration method is proposed to improve the circular plane kinematic accuracy of industrial robot by using dynamic measurement of double ball bar (DBB). The kinematic model of robot is established by the MDH (Modified Denavit-Hartenberg) method. The error mapping relationship between the motion error of end-effector and the kinematic parameter error of each axis is calculated through the Jacobian iterative method. In order to identify the validity of the MDH parameter errors, distance errors and angle errors of each joint axis were simulated by three orders of magnitude respectively. After multiple iterations, the average value of kinematic error modulus of end-effector was reduced to nanometer range. Experiments were conducted on an industrial robot (EPSON C4 A901) in the working space of 180 mm × 490 mm. Due to the measuring radius of DBB, the working space was divided into 30 sub-planes to measure the roundness error before and after compensation. The average roundness error calibrated by the proposed method at multi-planes decreased about 21.4%, from 0.4637 mm to 0.3644 mm, while the standard deviation of roundness error was reduced from 0.0720 mm to 0.0656 mm. In addition, by comparing the results of positioning error measured by the laser interferometer before and after calibration, the range values of motion errors of end-effector were decreasing by 0.1033 mm and 0.0730 mm on the X and Y axes, respectively

    LassoNet:Deep Lasso-Selection of 3D Point Clouds

    Get PDF
    Selection is a fundamental task in exploratory analysis and visualization of 3D point clouds. Prior researches on selection methods were developed mainly based on heuristics such as local point density, thus limiting their applicability in general data. Specific challenges root in the great variabilities implied by point clouds (e.g., dense vs. sparse), viewpoint (e.g., occluded vs. non-occluded), and lasso (e.g., small vs. large). In this work, we introduce LassoNet, a new deep neural network for lasso selection of 3D point clouds, attempting to learn a latent mapping from viewpoint and lasso to point cloud regions. To achieve this, we couple user-target points with viewpoint and lasso information through 3D coordinate transform and naive selection, and improve the method scalability via an intention filtering and farthest point sampling. A hierarchical network is trained using a dataset with over 30K lasso-selection records on two different point cloud data. We conduct a formal user study to compare LassoNet with two state-of-the-art lasso-selection methods. The evaluations confirm that our approach improves the selection effectiveness and efficiency across different combinations of 3D point clouds, viewpoints, and lasso selections. Project Website: https://lassonet.github.ioComment: 10 page

    AmbiguityVis: Visualization of Ambiguity in Graph Layouts

    Get PDF
    Node-link diagrams provide an intuitive way to explore networks and have inspired a large number of automated graphlayout strategies that optimize aesthetic criteria. However, any particular drawing approach cannot fully satisfy all these criteriasimultaneously, producing drawings with visual ambiguities that can impede the understanding of network structure. To bring attentionto these potentially problematic areas present in the drawing, this paper presents a technique that highlights common types of visualambiguities: ambiguous spatial relationships between nodes and edges, visual overlap between community structures, and ambiguityin edge bundling and metanodes. Metrics, including newly proposed metrics for abnormal edge lengths, visual overlap in communitystructures and node/edge aggregation, are proposed to quantify areas of ambiguity in the drawing. These metrics and others arethen displayed using a heatmap-based visualization that provides visual feedback to developers of graph drawing and visualizationapproaches, allowing them to quickly identify misleading areas. The novel metrics and the heatmap-based visualization allow a userto explore ambiguities in graph layouts from multiple perspectives in order to make reasonable graph layout choices. The effectivenessof the technique is demonstrated through case studies and expert reviews
    • …
    corecore