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A B S T R A C T   

A new calibration method is proposed to improve the circular plane kinematic accuracy of industrial robot by 
using dynamic measurement of double ball bar (DBB). The kinematic model of robot is established by the MDH 
(Modified Denavit-Hartenberg) method. The error mapping relationship between the motion error of end- 
effector and the kinematic parameter error of each axis is calculated through the Jacobian iterative method. 
In order to identify the validity of the MDH parameter errors, distance errors and angle errors of each joint axis 
were simulated by three orders of magnitude respectively. After multiple iterations, the average value of kine
matic error modulus of end-effector was reduced to nanometer range. Experiments were conducted on an in
dustrial robot (EPSON C4 A901) in the working space of 180 mm � 490 mm. Due to the measuring radius of DBB, 
the working space was divided into 30 sub-planes to measure the roundness error before and after compensation. 
The average roundness error calibrated by the proposed method at multi-planes decreased about 21.4%, from 
0.4637 mm to 0.3644 mm, while the standard deviation of roundness error was reduced from 0.0720 mm to 
0.0656 mm. In addition, by comparing the results of positioning error measured by the laser interferometer 
before and after calibration, the range values of motion errors of end-effector were decreasing by 0.1033 mm and 
0.0730 mm on the X and Y axes, respectively.   

1. Introduction 

Kinematic accuracy of industrial robot is a key factor that constrains 
its performance in high precision industrial applications. The kinematic 
calibration of robot is an effective process to improve the accuracy of 
robot that includes four steps: kinematic error modeling, error mea
surement, kinematic error identification and error compensation [1]. 
Among these steps, measuring the end-effector pose (i.e., position and 
orientation) of the robot in the reference coordinate system is a key 
procedure in robot calibration. 

Various measuring devices, such as double ball bar (DBB) [2–4], 
automatic theodolite [5,6], coordinate measuring machines (CMM) 
[7–9], FRAO arm [10,11], laser tracker [9,12–14] and customized fix
tures [15–17], have been employed for calibration tasks. The DBB is a 
relative low-cost and off the-shelf device with sub-micro accuracy, thus 
many researchers have proposed different calibration methods to reduce 
the kinematic error of various robots by applying this measuring device. 
Nubiola et al. [2,3] calibrated the kinematic errors of the robot with 6D 
measurement system based on DBB. The least squares approximation 

method, Jacobian iteration method and D-HM model had been applied 
in calibration process. The mean absolute positioning error was 
improved from 0.873 mm to 0.479 mm after calibrating. Li et al. [18] 
presented a calibration method for measuring the overconstrained par
allel robot using a DBB and a 3-axes linear stage with micrometers. The 
structural parameters of the robot were identified by the Newton 
Raphson iteration and least squares method. Accuracy improvements on 
the order of 90% were achievable after calibration. Gaudreault et al. 
[19] presented a novel low-cost, three-dimensional automated 
measuring device and a robot calibration procedure to calibrate a 
six-axis serial industrial robot. Lee et al. [20] proposed a method to 
improve the accuracy of machine tools using just a DBB, which was used 
to measure the length of the six sides of a virtual regular tetrahedron 
within the workspace. Although these methods greatly improve the 
motion accuracy of the robot and machine tool, some measurement 
methods are still complicated, time consuming and small-scale, which 
are only suitable for the static measurement of robot motion errors. To 
the best of our knowledge, there has been no research exploring the 
robot kinematic calibration considering the XY-dimension, continuous 
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and dynamic measurement. Therefore, a new kinematic calibration 
method employed DBB as measuring tool is proposed to evaluate the 
plane motion error of industrial robot, dynamically. 

In this paper, the calibration algorithms are combined of MDH 
method, Jacobian iteration method, the least square method and 
Newton-Raphson iterative method. Based on the results measured by the 
DBB, the kinematic error model is established by measuring the 
roundness error of the circular motion trajectory of the robot. The MDH 
method is applied to establish the kinematic model of robot. In addition, 
the Jacobian iteration method is adopted to calculate the error mapping 
relationship between the motion errors of the end effector and the ki
nematic parameters errors of each axis. A multi-plane dynamic mea
surement experiment based on DBB was performed to evaluate the 
effectiveness of calibration method. To further verify the validity of the 
calibration method, the laser interferometer was employed to measure 
the positioning accuracy of end-effector before and after calibration. 

2. Robot calibration model based on circular error 

2.1. Kinematic model of robot 

The EPSON C4-A901 industrial robot shown in Fig. 1a is adopted as a 
research object. According to Cartesian coordinate, the three- 
dimensional coordinate of each joint axis is defined as shown in 
Fig. 1b. Due to the joints 2 and 3 of the robot are linked in parallel, the 
Modified DH(MDH) model is applied in the study to avoid model sin
gularity [21,22]. 24 kinematic parameters of robot model are described 
by MDH notion as shown in Table 1. The homogeneous transformation 
matrix T from the base of the robot to the end-effector of the robot is 

expressed as: 

T¼0
1T⋅1

2T⋅2
3T⋅3

4T⋅4
5T⋅5

6T⋅6
7T¼

Y7

i¼1

i� 1
i T (1)  

where i-1 iT is the homogeneous transformation matrix from (i–1)th axis 
to ith axis. 

2.2. Kinematic error model based on circular plane trajectory 

The common kinematic mode of the robot in the plane is straight line 
or curve. In this paper, the circular trajectory is considered as the motion 
curve to establish the kinematic error model. 

The point O (x0, y0) of the coordinate system is assumed as the center 
of the circular trajectory. When the robot moves, the theoretical coor
dinate of each point is Pi (xi, yi). Since the robot has motion error Si, the 
actual coordinate of the point is Pi

0(xi
0, yi

0) shown in Fig. 2. Then, the 
kinematic errors of the robot in coordinate system of XOY plane are: 
(

Δxi ¼ x’
i � xi

Δyi ¼ y’
i � yi

(2)  

Fig. 1. 3D model of robot and its coordinate system.  

Table 1 
MDH parameters (unit: angles in rad, lengths in mm,‘-’ undefined).  

i αi ai βi θi di 

1 pi/2 100 – pi/2 320 
2 pi 400 0 pi/2 – 
3 -pi/2 0 – 0 0 
4 pi/2 0 – 0 400 
5 -pi/2 0 – 0 0 
6 0 0 – 0 150.13  

Fig. 2. Measurement error of DBB on the XY plane.  
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Δri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δx2
i � Δy2

i

q

(3) 

Si ¼ [Δxi Δyi] T is the array of motion error that is the difference 
value between the theoretical position Pi (xi, yi) and the actual position 
Pi
0(xi

0, yi
0). 

S ¼
�
S1 S2 ::: Sk=2

�T (4)  

where S is a column vector consisting of k/2 motion errors. The evalu
ation index of the circular plane kinematic accuracy of the robot is 
roundness error (RE) which is the difference value between the 
maximum and the minimum values of Δr shown as in Fig. 2. 

An error mapping relationship between S and the MDH parameter 
error is established by the Jacobian iterative method. A kinematic model 
suitable for robot calibration should meet the three principles: 
Completeness, Continuity and Minimality [23]. Because of the limita
tion of measurement dimension, the error mapping relationship only 
indicates the kinematic parameter errors in XY plane. The MDH model is 
adopted to describe the robot kinematics, while error model based on 
MDH does not satisfy the minimization criteria. To distinguish MDH 
parameters, the MDH parameters are classified into three categories: 

1) Independent parameters represent that the columns of correspond
ing Jacobian matrix J are independent of other columns.  

2) Related parameters represent that the columns of corresponding 
Jacobian matrix J are linearly correlated with other columns. 

3) Unrecognized parameters represent that the columns of corre
sponding Jacobian matrix J are all zero. 

When the kinematic model is redundant, the identification results of 
error equation will not converge by applying the least square method. To 
establish an independent model, the redundant parameters in the 
redundant model are deleted as shown in Fig. 3. The redundant pa
rameters are including unrecognized parameters and partially related 
parameters. There are two steps to establish independent model which is 
only including independent parameters. 

Step 1: All zero columns in Jacobian Matrix J are eliminated, that has 
no effect on the modeling error of the model. 
Step 2: The redundant linear correlation columns in Jacobian Matrix 
J are eliminated. 

The robot is described by 24 kinematic parameters which are listed 
on Table 1. By deleting redundant parameters α1, α3, α4, α5, d3, d4 and d5, 
an independent model including 17 independent parameters is obtained 
to describe the actual planar kinematics of the robot. 

2.3. Method of robot calibration 

An appropriate kinematic error model is established by selecting the 
MDH parameters to represent the plane kinematic error of the robot. 
According to the result from S, the observation equation is obtained: 

Jη ¼ S (5)  

J is the Jacobian matrix. Because this study only considered the 

Cartesian coordinate system in the XOY plane, the equation number of 
Eq. (5) is k/2. k is the element number of S vector. k should be larger 
than the number of the parameters of independent model. 

The MDH parameters error are calculated by the least square method 
[24–26]. The calculation equation of η is: 

η¼
�
JT J

�� 1JTS (6)  

where η is the approximate solution of the MDH parameters error. The 
validity of the least square solution η is determined in two steps: 

Fig. 3. Schematic diagram for eliminating redundant parameters.  

Fig. 4. Flow chart of motion error calibration.  
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Step 1: If the absolute value of η is less than a constraint value ε, move 
to the next step. Otherwise, η need to be recalculated. In this study, 
the value of ε is setting as 0.01. 
Step 2: The position error S and S0 are calculated by the MDH model 
and the calibrated MDH(CMDH) model, respectively. S0 is a column 
vector consisting of motion errors of the end-effector which is 
calculated by CMDH model. The parameters of CMDH model are 
calculated by adding η to the parameters of the MDH model. If || 

S||>||S’||, the calibration of motion error of robot is acceptable. 
Otherwise, the calibration is invalid. 

The calculation flow chart of motion error calibration is shown in 
Fig. 4. When η is verified, the value of CMDH is assigned to MDH. The 
algorithm continues to the next cycle until the number of iterations t is 
larger than or equal to the setting number of iterations n. After n times of 
effective loop iterations, the optimal calibration result is obtained. 

Owing to the mechanical design of robot, parts of MDH parameters, 
such as α, β, a, d, are unable to be modified. Numerous researchers have 
adopted other methods to compensate the MDH parameter errors by 
only modifying the joint angle of each axis. Thus, Newton-Raphson 
iterative method is applied to compensate the angle error in MDH 
parameter errors [5]. 

3. Simulation 

Because the kinematic error was mainly influenced by the variation 
of angle error and distance error of each joint, the simulation was 
divided into two groups to analyze the convergence of the proposed 
algorithm by setting the parameter errors of different order of magni
tude. In the simulation, the three values of angle errors were set as 
0.0001�,0.001� and 0.01�, respectively, while the three values of dis
tance errors were set as 1 μm,10 μm and 100 μm, respectively. In the first 
group of simulation, the value of each angle error was set to a constant 
under setting the values of the distance errors at different levels (shown 
in Table 2). In the second group of simulation, the values of distance 

Table 2 
Simulation A1-Given MDH parameters error (unit: lengths in mm, angles in deg).  

Category Distance errors Angle errors 

Δa Δd Δα Δβ Δθ 

A1-1 0.001 0.001 
A1-2 0.01 0.001 
A1-3 0.1 0.001  

Table 3 
Simulation A2-Given MDH parameters error (unit: lengths in mm, angles in deg).  

Category Distance errors Angle errors 

Δa Δd Δα Δβ Δθ 

A2-1 0.01 0.0001 
A2-2 0.01 0.001 
A2-3 0.01 0.01  

Fig. 5. Simulation results of iterative process.  

Fig. 6. Measurement plane space division and its distribution.  
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errors were set to a constant under setting the value of angle errors at 
different levels (shown in Table 3). 

To observe the iteration effect of the algorithm, the average value of 
kinematic error modulus of end-effector was adopted to evaluate the 
iteration effect as shown in Fig. 5. The simulation results in Fig. 5a shows 
that the average value of kinematic error modulus of end-effector 
without calibration were 2.1814 mm, 2.1865 mm and 2.2995 mm, 
respectively. When the number of iterations increased to four times, the 
average value of modulus decreased to the nanometer level. The 

simulation results in Fig. 5b shows that the average values of modulus 
without calibration were 0.2293 mm, 2.1865 mm, and 21.8701 mm, 
respectively. When the number of iterations increased to three times, the 
average value of modulus was in the range of nanometer level. The 
simulation results showed that the method mentioned above had a 
strong identification effect for the distance and angle parameter errors in 
different magnitudes. 

4. Experiments 

4.1. Roundness error evaluation based on multi-plane 

Because the robot has larger workspace and greater freedom than the 
traditional CNC machine, the error characteristics of robots in working 
area are more complicated. A multi-plane dynamic measurement 
method based on DBB was proposed to evaluate the distribution char
acteristics of the kinematic error of the robot in the working plane. The 
origin of measurement coordinate system coincides with the base co
ordinate system of robot. The reachable range of the robot is the arc area 
between the maximum and minimum range of the robot’s motion. To 
ensure that the experiment is carried out in the reachable range of the 
robot, the measuring region with a size of 480 mm � 790  mm was 
selected to evaluate the planar motion performance of the robot. The 
end-effector of the robot can only motion within the reachable range of 
the robot, as shown in Fig. 6a. The selected plane of the robot was 
divided into 30 sub-planes, equally. The measuring centers were set at 
the center of each sub-plane as shown in Fig. 6b. The coordinate dis
tribution of the measuring centers is shown in Table 4. Each measurable 
center was measured by the DBB with a radius of 150 mm. Roundness 
error was regarded as an index to evaluate the planar motion accuracy of 
end-effector of robots. 

Table 4 
Coordinate distribution of the measuring centers (unit: mm).  

Center 1 2 3 4 5 6 7 8 9 10 

X 35 35 35 � 35 � 35 � 35 105 105 105 105 
Y 571 631 691 571 631 691 511 571 631 691 
Z 120 120 120 120 120 120 120 120 120 120 

Center 11 12 13 14 15 16 17 18 19 20 

X � 105 � 105 � 105 � 105 175 175 175 175 � 175 � 175 
Y 511 571 631 691 511 571 631 691 511 571 
Z 120 120 120 120 120 120 120 120 120 120 

Center 21 22 23 24 25 26 27 28 29 30 

X � 175 � 175 245 245 245 245 � 245 � 245 � 245 � 245 
Y 631 691 511 571 631 691 511 571 631 691 
Z 120 120 120 120 120 120 120 120 120 120  

Fig. 7. The installation of the experimental equipment.  

Fig. 8. Distribution of roundness error before and after calibration.  
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The installation of the experimental equipment is shown as in Fig. 7. 
The measuring ball at the ball socket was fixed at one of the measuring 
centers in the working area. One end of the DBB was magnetically 
attracted to the measuring ball. The other end of the DBB was pulled by 
the end of fixture to rotate around the measuring ball. The radius of 
rotation was the length of the DBB. The DBB is rotated in the XY plane, 
thus the coordinate system of the plane was defined as XOY. The initial 
position of the DBB was in the negative direction of the Y-axis. The DBB 
obtained the deviation value of rod length measured by the displace
ment sensor embedded in the rod. The experimental steps were per
formed as followings: 

Step 1: The circular trajectory was defined as L. The center of the 
circle was defined as O, while the length of the rod was defined as r. 
Step 2: The end-effector of the robot was controlled to rotate one turn 
along the trajectory L. The data points measured by the DBB were 
recorded. 

4.2. Experiment results based on DBB 

The data of positon error was obtained directly by DBB experiment. 
The joint angle θ was acquired from the operation software of robot. The 
CMDH model was established by using the Jacobian iterative algorithm. 
Then, the Newton-Raphson iterative method was adopted to calculate 
joint angle errors. Finally, the position information including joint angle 
errors was fed back to the robot control software. The experiment was 
re-examined to verify the calibration effect of the method mentioned 
above. 

Considering the measuring radius of the DBB, the measuring region 
with a size of 180 mm � 490  mm was selected to evaluate the planar 
motion performance of the robot. Therefore, the variation range of 
measuring center of DBB is from � 245mm to 245 mm in the direction of 
X axis, while the variation range of measuring center of DBB is from 511 
mm to 691 mm in the direction of Y axis. The experiment was performed 
in 30 sub-planes to evaluate the effectiveness of calibration method. The 
comparative results before and after compensation are shown in Figs. 8 
and 9. 

Fig. 8a is mainly in green, which indicates that the results of the 
roundness error measuring in the workspace were mostly greater than 
0.4 mm. Fig. 8b is mostly in blue and black, which shows that the 
roundness errors were overall less than 0.4 mm after calibration. Com
parison of Fig. 8a and b, the roundness error after compensation were 
significantly lower than that before compensation. 30 groups of 
comparative experiments were conducted in different locations, which 
are listed in Table 4. Fig. 9 shows that the roundness error of each sub- 

planes was improve in different degrees after calibration experiment. 
Table 5 shows that the average roundness error at 30 sub-planes had 
dropped about 21.4%, from 0.4637 mm to 0.3644 mm, after calibration. 
The standard deviation of roundness error was reduced from 0.0720 mm 
to 0.0656 mm. Thus, it is concluded that the motion accuracy of robot 
was improved by the proposed calibration method at different central 
point in plane space. 

4.3. Experimental verification based on laser interferometer 

To verify the validity of the calibration method, the laser interfer
ometer was employed to measure the positioning accuracy of end- 
effector before and after calibration. 

In the experiment, the DBB with measuring radius of 100 mm, 150 
mm and 250 mm was adopted to calibrate the different size of plane at 
the same central position, respectively. On the measuring path of the 
DBB, twelve measuring points were chosen along the X-axis and Y-axis 

Fig. 9. Comparison of roundness error before and after compensation at 
multicenter. 

Table 5 
Comparison of roundness error between before and after compensation of 
multicenter (unit: mm).  

Category Average roundness error Standard deviation 

Before compensation 0.4637 0.0720 
After compensation 0.3644 0.0656  

Fig. 10. Measurement positions of Laser interferometer on X and Y axes.  

Fig. 11. The installation of the laser interferometer.  
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directions of the coordinate system, as shown in Fig. 10. 
The experimental setup of the laser interferometer in Y direction is 

shown in Fig. 11 for measuring the same positioning error of the end- 
effector mentioned above. 

To unify the measuring coordinate of the DBB, the measuring origin 
of the laser interferometer was set as the same center of the DBB. The 
measurement results of the before and after calibration of each point are 
shown as in Fig. 12. 

The results from Fig. 12 and Table 6 show that the range value of 
positioning error at X-axis had reduced from 0.4251 mm to 0.3218 mm. 
The range value of positioning error at Y-axis had reduced from 0.3603 
mm to 0.2873 mm. The standard deviation of positioning error at X-axis 
had dropped from 0.1346 mm to 0.1025 mm. The standard deviation of 
positioning error at Y-axis had decreased from 0.1327 mm to 0.0996 
mm. 

5. Conclusions 

A new calibration method based on the dynamic measurement of 
DBB was proposed for improving the kinematic accuracy of industrial 
robot in circle plane. From the results of simulation and experiment, the 
followings details were concluded:  

(1) The kinematic error model is established by measuring the 
roundness error of end-effector of robot based on the DBB. The 
MDH method is applied to establish the kinematic model of robot. 
The Jacobian iterative method is adopted to create error mapping 
relationship between the motion error of end-effector and MDH 
parameters error.  

(2) The distance errors and angle errors of each joint axis of robot 
were simulated by three orders of magnitude respectively, which 
verifies the identification effect of the proposed algorithm on 
MDH parameter error. During multiple iterations, the average 

value of kinematic error modulus of end-effector was reduced to 
nanometer range. 

(3) The average roundness errors of 30 sub-planes in the robot ki
nematic space calibrated by the proposed method was reduced 
about 21.4%. Furthermore, the range value of the positioning 
error acquired from the laser interferometer decreased by 0.1033 
mm and 0.0730 mm on the X and Y axis, respectively. 
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