37 research outputs found

    MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia

    Get PDF
    The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021Peer reviewe

    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females

    Get PDF
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders

    Inducing RNAi by feeding

    No full text
    RNA interference (RNAi) is a technique that deliberately introducing dsRNA sequences identical to the sequence of a gene, then the result of the silence of the gene can be observed. RNAi can be activated in C. elegans, a roundworm commonly studied by researchers, by feeding worms bacteria expressing dsRNA. In this project, two RNAi strain of E. coli, dqy-11 and bli-1, will be introduced to C. elegans. Each RNAi “feeding strain” of bacteria contains a plasmid with a piece of DNA containing sequence from the gene it is designed to silence. The dsRNA eaten by the worms will turn down the gene and the results can be examined by any changes of the phenotypes

    An investigation into taxpayer consciousness of their marginal income tax rates

    No full text
    This research paper investigates the level of marginal income tax rate consciousness of taxpayers in Singapore. It was hypothesized in this paper that (1) the general Singapore population will tend to overestimate their marginal income tax rate, (2) higher income will lead to higher probability of an individual over or underestimating his marginal income tax rate, and (3) 8 identified factors have significant impact in explaining the difference in the level of marginal income tax rate consciousness

    Bioinspired Jellyfish Microparticles from Microfluidics

    No full text
    Nonspherical particles have attracted increasing interest because of their shape anisotropy. However, the current methods to prepare anisotropic particles suffer from complex generation processes and limited shape diversity. Here, we develop a piezoelectric microfluidic system to generate complex flow configurations and fabricate jellyfish-like microparticles. In this delicate system, the piezoelectric vibration could evolve a jellyfish-like flow configuration in the microchannel and the in situ photopolymerization could instantly capture the flow architecture. The sizes and morphologies of the particles are precisely controlled by tuning the piezoelectric and microfluidic parameters. Furthermore, multi-compartmental microparticles with a dual-layer structure are achieved by modifying the injecting channel geometry. Moreover, such unique a shape endows the particles with flexible motion ability especially when stimuli-responsive materials are incorporated. On the basis of that, we demonstrate the capability of the jellyfish-like microparticles in highly efficient adsorption of organic pollutants under external control. Thus, it is believed that such jellyfish-like microparticles are highly versatile in potential applications and the piezoelectric-integrated microfluidic strategy could open an avenue for the creation of such anisotropic particles

    Multifunctional GO Hybrid Hydrogel Scaffolds for Wound Healing

    No full text
    Hydrogel dressings have received extensive attention for the skin wound repair, while it is still a challenge to develop a smart hydrogel for adapting the dynamic wound healing process. Herein, we develop a novel graphene oxide (GO) hybrid hydrogel scaffold with adjustable mechanical properties, controllable drug release, and antibacterial behavior for promoting wound healing. The scaffold was prepared by injecting benzaldehyde and cyanoacetate group-functionalized dextran solution containing GO into a collection pool of histidine. As the GO possesses obvious photothermal behavior, the hybrid hydrogel scaffold exhibited an obvious stiffness decrease and effectively promoted cargo release owing to the breaking of the thermosensitive C=C double bond at a high temperature under NIR light. In addition, NIR-assisted photothermal antibacterial performance of the scaffold could be also achieved with the local temperature rising after irradiation. Therefore, it is demonstrated that the GO hybrid hydrogel scaffold with vascular endothelial growth factor (VEGF) encapsulation can achieve the adjustable mechanical properties, photothermal antibacterial, and angiogenesis during the wound healing process. These features indicated that the proposed GO hybrid hydrogel scaffold is potentially valuable for promoting wound healing and other biomedical application

    Multiple acetylcholinesterases in Pardosa pseudoannulata brain worked collaboratively to provide protection from organophosphorus insecticides

    No full text
    Acetylcholinesterase (AChE) is an essential neurotransmitter hydrolase in nervous systems of animals and its number varies among species. So far, five AChEs have been identified in the natural enemy Pardosa pseudoannulata. Here we found that Ppace1, Ppace2 and Ppace5 were highly expressed in the spider brain, among which the mRNA level of Ppace5, but not Ppace1 and Ppace2, could be up-regulated by organophosphorus insecticides at their sublethal concentrations. In spider brain, the treatment by organophosphorus insecticides at the sublethal concentrations could increase total AChE activity, although high concentrations inhibited the activity. The activity that increased from the sublethal concentration pretreatment could compensate for the activity inhibition due to subsequent application of organophosphorus insecticides at lethal concentrations, and consequently reduce the mortality of spiders. PpAChE1 and PpAChE2 were highly sensitive to organophosphorus insecticides, and their activities would be strongly inhibited by the insecticides. In contrast, PpAChE5 displayed relative insensitivity towards organophosphorus insecticides, but with the highest catalytic efficiency for ACh. That meant the up-regulation of Ppace5 under insecticide exposure was important for maintaining AChE activity in spider brain, when PpAChE1 and PpAChE2 were inhibited by organophosphorus insecticides. The study demonstrated that multiple AChEs in the spider brain worked collaboratively, with part members for maintaining AChE activity and other members responding to organophosphorus inhibition, to provide protection from organophosphorus insecticides. In fields, high concentration insecticides are often applied when ineffective controls of insect pests occur due to relative-low concentration of insecticides in last round application. This application pattern of organophosphorus insecticides provides more chances for P. pseudoannulata to survive and controlling insect pests as a natural enemy

    The Protection of Salidroside of the Heart against Acute Exhaustive Injury and Molecular Mechanism in Rat

    Get PDF
    Objective. To investigate the protection of salidroside of the heart against acute exhaustive injury and its mechanism of antioxidative stress and MAPKs signal transduction. Method. Adult male SD rats were divided into four groups randomly. Cardiomyocytes ultrastructure was observed by optical microscopy and transmission electron microscopy. The contents of CK, CK-MB, LDH, MDA, and SOD were determined by ELISA method, and the phosphorylation degrees of ERK and p38 MAPK were assayed by Western blotting. Cardiac function of isolated rat heart ischemia/reperfusion was detected by Langendorff technique. Results. Salidroside reduced the myocardium ultrastructure injury caused by exhaustive swimming, decreased the contents of CK, CK-MB, and LDH, improved the LVDP, ±LV dp/dtmax under the basic condition, reduced the content of MDA and the phosphorylation degree of p38 MAPK, and increased the content of SOD and the phosphorylation degree of ERK in acute exhaustive rats. Conclusion. Salidroside has the protection of the heart against acute exhaustive injury. The cardioprotection is mainly mediated by antioxidative stress and MAPKs signal transduction through reducing the content of MDA, increasing the content of SOD, and increasing p-ERK and decreasing p-p38 protein expressions in rat myocardium, which might be the mechanisms of the cardioprotective effect of salidroside
    corecore